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Equilibrium Forward Curves for Commodities
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ABSTRACT

We develop an equilibrium model of the term structure of forward prices for stor-
able commodities. As a consequence of a nonnegativity constraint on inventory, the
spot commodity has an embedded timing option that is absent in forward con-
tracts. This option’s value changes over time due to both endogenous inventory and
exogenous transitory shocks to supply and demand. Our model makes predictions
about volatilities of forward prices at different horizons and shows how conditional
violations of the “Samuelson effect” occur. We extend the model to incorporate a
permanent second factor and calibrate the model to crude oil futures data.

COMMODITY MARKETS IN RECENT YEARS have experienced dramatic growth in
trading volume, the variety of contracts, and the range of underlying com-
modities. Market participants are also increasingly sophisticated about rec-
ognizing and exercising operational contingencies embedded in delivery
contracts.! For all of these reasons, there is a widespread interest in models
for pricing and hedging commodity-linked contingent claims. In this paper
we present an equilibrium model of commodity spot and forward prices. By
explicitly incorporating the microeconomics of supply, demand, and storage,
our model captures some fundamental differences between commodities and
financial assets.

Empirically, commodities are strikingly different from stocks, bonds and
other conventional financial assets. Among these differences are:
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1 For example, energy supply contracts often include so-called “swing” options which give
industrial consumers the flexibility to increase their “take” above a baseload at a fixed price for
a pre-agreed number of extra days each month. See Jaillet, Ronn, and Tompaidis (1997) and
Pilipovic and Wengler (1998).
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e Commodity futures prices are often “backwardated” in that they decline
with time-to-delivery. For example, Litzenberger and Rabinowitz (1995)
document that nine-month futures prices are below the one-month prices
77 percent of the time for crude oil.

e Spot and futures prices are mean reverting for many commodities.

e Commodity prices are strongly heteroskedastic (see Duffie and Gray
(1995)) and price volatility is positively correlated with the degree of
backwardation (see Ng and Pirrong (1994) and Litzenberger and Rabino-
witz (1995)).

e The term structure of commodity forward price volatility typically de-
clines with contract horizon. This is known as the “Samuelson (1965)
effect.” However, violations of this pattern occur when inventory is high
(see Fama and French (1988)).

e Unlike financial assets, many commodities have pronounced seasonal-
ities in both price levels and volatilities.

In equilibrium, backwardation implies that immediate ownership of the phys-
ical commodity entails some benefit or convenience which deferred owner-
ship (via a long forward position) does not. This benefit, expressed as a rate,
is termed the “convenience yield” (e.g., see Hull (1997)). A convenience yield
is natural for goods, like art or land, that offer exogenous rental or service
flows over time. However, substantial convenience yields are also observed
in other commodities, such as agricultural products, industrial metals, and
energy, which are consumed at a single point in time.

The “theory of storage” of Kaldor (1939), Working (1948, 1949), and Telser
(1958) explains convenience yields in terms of an embedded timing option.
In particular, the holder of a storable commodity (e.g., oil, natural gas, cop-
per) can decide when to consume it. If it is optimal to store a commodity for
future consumption, then it is priced like an asset, but if it is optimal to
consume it immediately, then the commodity is priced as a consumption good.
Thus, a commodity’s spot price is the maximum of its current consumption
and asset values. In contrast, forward prices derive solely from the asset
value of the deferred right to consume after delivery. Inventory decisions are
important for commodities because—by influencing the relative current and
future scarcity of the good—they link its current (consumption) and ex-
pected future (asset) values. This is unlike equities and bonds where out-
standing quantities are fixed. This link is imperfect, however, because
inventory is physically constrained to be nonnegative. Inventory can always
be added to keep current spot prices from being too low relative to expected
future spot prices. However, once the aggregate discretionary inventory? of a

2 Measured inventory is never literally driven to zero in practice since some stocks are held
as committed inputs in production (e.g., gas or oil in transit). By discretionary inventory we
mean commodity stocks in excess of those committed to the production process (e.g., exchange
warehouse holdings or inventory held otherwise by traders). For example, Brennan (1991) doc-
uments high copper prices when the aggregate inventory/sales ratio falls below a few weeks.
Nondiscretionary inventories have their own convenience value by reducing production disrup-
tions, minimizing delivery costs, etc.
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commodity is driven to zero, its spot price is tied solely to the good’s (high)
“immediate use” consumption value. Thus, “stockouts” break the link be-
tween the current consumption and expected future asset values of a good.
The result is backwardation and positive convenience yields.

In this paper we follow Deaton and Laroque (1992, 1996), Williams and
Wright (1991), and Chambers and Bailey (1996) and use a competitive ra-
tional expectations model of storage to study the impact of the embedded
timing option on commodity spot and futures/forward pricing.? We assume
that the “immediate-use” consumption value is driven by a mean-reverting
Markov process and solve for the equilibrium inventory of competitive, risk-
neutral agents. The shock process and inventory rule then jointly determine
the spot and forward price processes. Our main results are the following:

¢ The equilibrium term structure of spot and forward prices is decreasing
in inventory and—under a natural sufficient condition—increasing in
the current Markov shock.

e Endogenous binomial price trees are constructed for pricing and hedg-
ing commodity-linked futures and (by extension) options and other
derivatives.

¢ Conditional violations of the “Samuelson effect” occur when inventory is
sufficiently high in the model. In particular, forward price volatilities
can initially increase with contract horizon.

e Hedge ratios for long-dated forward positions using short-dated for-
wards are not constant, but are conditional on the current demand shock
and the endogenous inventory level.

e A one-factor version of the model cannot match both the high uncondi-
tional volatility of long-horizon Nymex crude oil futures prices and the
conditional volatilities given contango and backwardation. However, a
tractable two-factor augmentation of the basic model is more successful.

An alternative to modeling forward and spot prices explicitly from economic
primitives is to treat the convenience yield as an exogenous “dividend” pro-
cess. For example, Brennan (1991), Gibson and Schwartz (1990), Amin, Ng,
and Pirrong (1995), and Schwartz (1997) all model spot prices and conve-
nience yields as separate stochastic processes with a constant correlation.*
Although these models are powerful tools for derivative pricing and hedging,

3 Routledge, Seppi, and Spatt (1999) extend this analysis to multiple commodities and, spe-
cifically, to electricity. While electricity itself is not directly storable, potential marginal fuels
(e.g., natural gas, coal) are storable. Heinkel, Howe, and Hughes (1990) analyze a three-period
economy in which optionality induces convenience yields and Bresnahan and Spiller (1986)
discuss the relationship between inventory and the slope of the forward curve. Litzenberger and
Rabinowitz (1995) model the impact of timing options on the optimal extraction path for a
depletable resource and equilibrium prices. Pirrong (1998) studies commodity option pricing
with storage.

4 Schwartz and Smith (2000) present a model with two factors, a “long-run” price component
and a transitory disturbance, which they show is equivalent to the Gibson and Schwartz (1990)
convenience yield model. Miltersen and Schwartz (1998) model a stochastic term structure of
convenience yields based on Heath, Jarrow, and Morton (1992).
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our approach also has several attractions. First, explicitly modeling the joint
evolution of inventory and spot prices ensures the consistency of the spot
price and convenience yield (i.e., forward price) dynamics.? Second, our model
predicts that the correlation between spot prices and convenience yields (or
their innovations) is unlikely to be constant due to its dependence on inven-
tory. Third, inventory acts as a second state variable summarizing past shocks,
which allows our model to capture a stochastic convenience yield with only
one exogenous factor.

The paper is organized as follows. Section I describes the basic one-factor
model, demonstrates existence of equilibrium, and derives properties of the
equilibrium inventory and spot price processes. Section II investigates prop-
erties of the forward curve and endogenous implied convenience yields. We
also study the forward price volatility term structure and hedge ratios. Sec-
tion III carries out a numerical calibration exercise and presents a tractable
two-factor version of the basic model. Section IV concludes. Proofs are col-
lected in the Appendix.

I. Equilibrium Model of Commodity Prices

The goal of this paper is to characterize spot and forward commodity prices
in an equilibrium model of inventory with nonnegative storage. Our analysis
builds on and extends Deaton and Laroque (1992, 1996), Chambers and Bai-
ley (1996), Williams and Wright (1991), and Wright and Williams (1989). We
start with general functional forms and develop tractable numerical imple-
mentations for derivative security valuation. We also investigate properties
of the term structure of forward price volatility.

A. Model Structure

Consider a discrete-time, infinite horizon model in which a single homo-
geneous commodity is traded in a competitive market at dates ¢ = 1,2,....
Current production and consumption demand for “immediate use” are mod-
eled as stochastic, reduced-form functions, g, and ¢,, of the spot price, P,.
The commodity can be stored by a group of competitive risk-neutral inven-
tory traders who have access to a costly storage technology.

Storage is costly due to a constant proportional depreciation or wastage
factor, 6 € (0,1]. Storage of ¢ units of the commodity at ¢ — 1 yields (1 — §)q
at t. One can interpret 6 as spoilage (for agricultural commodities) or as a
volumetric cost (for metals and energy). For technical reasons § is strictly
positive, but we abstract, for simplicity, from any other fixed or marginal
costs.

5 Analogously, in some term structure settings assuming exogenous dynamics for interest
rates of bonds of different maturities can be incompatible with equilibrium (i.e., admit arbi-
trage opportunities). Examples along these lines are noted in Cox, Ingersoll, and Ross (1985).
Heath et al. (1992) describe the restrictions on forward price processes that are implied by the
absence of arbitrage. Arbitrary joint dynamics for stock prices and dividends may also be in-
consistent with equilibrium.
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The spot price, P,, is determined by market clearing. At each date ¢ the
two sources of the commodity, current production and incoming inventory
g, + (1 —6)Q,_1, must equal the two types of demand, immediate consump-
tion and outgoing inventory ¢, + @,. This can be rearranged to get

c,(Py) — g:(P;) = —AQ,, (1)

where AQ, = @, — (1— 6)®,_;. When AQ, is positive (i.e., when inventory is
increased), less of the good is left for immediate consumption. If the “imme-
diate use” net-demand c,(P,) — g,(P,) is monotone decreasing in the spot
price P,, the spot market can be summarized with an inverse net demand
function

P, = f(a;,AQ,). (2)

We initially abstract from permanent shocks and model the net demand
shocks a, € ) as realizations of a finite-dimensional, irreducible, m-state
Markov process (m = 2), with transition probabilities 7(a|a,) in a matrix II.
The shocks, a,, represent the transitory effects of weather and/or production
disruptions on the “immediate use” net demand, ¢, — g,. They are unaffected
by current and/or past inventory. Where noted, we sometimes make an ad-
ditional assumption that = (a|a,) > 0 for all a,, a € Q (denoted IT > 0),
which implies that the demand shocks have a limiting distribution that is
independent of the current state.t

Inventory (or the change in inventory AQ) is the key endogenous variable.
We assume that the net demand function, f, has the following properties for
all realizations a € ():

(A) f(a,AQ) > 0
(B) f(a,AQ) is increasing in A®
(C) f(a,AQ) is continuous and unbounded from above in AQ.

The first assumption states that prices are positive. The second says that
increased storage raises the good’s marginal valuation since it reduces the
amount available for immediate use. The third assumption, that f is contin-
uous and unbounded, is sufficient to ensure that a market-clearing spot
price exists.” The marginal valuation, f, need not be linear. Nonlinearities in
f can arise from either the demand, c,, or supply, g,.

8 An irreducible Markov process has the property that () is the unique ergodic set. This
means that all states are reachable with positive probability in some finite number of transi-
tions from any initial state. For example, there are no absorbing states. The additional assump-
tion that Il is strictly positive implies that there are no cyclically moving subsets. Alternatively,
everywhere we assume II > 0, we could instead assume some finite n exists such that I1* > 0
(see Karlin and Taylor (1975)).

7 Our analysis does not require that AQ is unbounded, but rather only that f(a,AQ) is un-
bounded. The special case in which the maximum feasible current production output is bounded
by some quantity g (e.g., as with a harvest) has f(a,AQ) — o as AQ — 3.
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The one-period risk-free interest rate is assumed here to be constant,
r = 0. Nonstochastic interest rates simplify the analysis and let us abstract
from the difference between forward and futures prices.

B. Equilibrium

Inventory decisions of the risk-neutral traders are easily characterized
since the only motive for holding inventory is trading profit.8 If spot prices
were expected to rise by more than the “carrying costs” (i.e., wastage and
interest), additional inventory would be purchased. This would then in-
crease current (and lower future) spot prices. Conversely, if prices were ex-
pected to fall (or rise by less than the carrying costs), then inventory would
be sold. However, inventory—or, more precisely, traders’ discretionary hold-
ings in excess of stocks irreversibly committed to production—can only be
reduced to zero. Optimal trading, given this physical nonnegativity con-
straint, implies that equilibrium spot prices and aggregate inventory must
jointly satisfy

P, = 0E,[P,,;] if@, >0 (3a)

P, = 0E,[P,.;] ifQ, =0, (3b)

where 6 = (1 — 6)/(1 + r) < 1 and E,[-] denotes (rational) expectations
conditional on the information, ¢, and @,_;, available at time ¢. Positive
equilibrium inventory, @, > 0, implies traders are indifferent to marginal
changes in their inventory. However, if inventory is “stocked out,” @, = 0,
traders may want to sell additional units but are physically constrained from
doing so. One cannot consume goods that do not yet exist. It is precisely this
asymmetry that makes the embedded timing option in the spot commodity
valuable and that, in equilibrium, leads to option-like behavior in commod-
ity prices.

We use P(a,q) and J(a,q) to denote the equilibrium spot price and aggre-
gate inventory functions given a current demand state, a, and previous ag-
gregate inventory, g. Without loss of generality, we assume @, = 0.

Definition of Equilibrium: {Q,,P,} is a stationary rational expectations equi-
librium inventory and price process if inventory and spot-price functions

0=0,Q, =J(a,;,Q 1) and P, = P(a,,Q, 1) = f(a;, @ — (1 = 6)Q, ;) exist
that satisfy condition (3) for all ¢.

8 Jagannathan (1985) and Richard and Sundaresan (1981) derive equilibrium commodity
prices under risk aversion. These papers do not consider the short-sale constraint while our
model abstracts from risk aversion. With risk-averse traders the expectations in condition (3)
should be taken using the risk-neutral martingale measure.
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Proposition 1 establishes existence. The corollaries that follow identify some
useful properties of the equilibrium inventory process. These are standard
(e.g., see Deaton and Laroque (1992)) and are not the focus of our paper.

ProrosiTioN 1 (Equilibrium): A stationary rational expectations equilibrium
exists and has the following properties:

(a) the equilibrium inventory J(a,q) is continuous in q and, for all a € (),
q = 0, and perturbations € > 0, satisfies

0=dJ(a,q +€)—J(a,q) <(1—0d)e (4)

(b) a unique finite upper bound, Q,,., = 0, exists such that J(a,q) = Q4.
forall a € Q and q € [0,Q,,..] and J(a,@Q,,,4..) = Qs fOr Some a € ),
and

(c) the equilibrium spot price P(a,q) is continuous and decreasing in q
and is bounded such that 0 < P(a,q) < o for all a € Q and q €

[07 Qmax]'

Costly storage and the assumptions on f ensure that the slope of the inven-
tory function / is less than 1 — § and, hence, that equilibrium inventory is
bounded. Another implication of the slope of J being less than 1 — § is that
equilibrium spot prices P, are smaller when previous storage @,_, is higher.
Prices are positive due to the proportional storage cost and finite since in-
ventory (and inventory changes) are bounded. If carrying costs, 6, are large
enough, equilibrium inventory is always zero (i.e., @, = @,,,. = 0). However,
equilibrium storage can be positive if f(a;,0) < 6 E[ f(a,0)|a;] in some de-
mand states a; € (). In equilibria with positive storage, certain a € () can be
identified as “sell states” in which inventory is never accumulated. In par-
ticular, if the prior inventory is sufficiently low, then all incoming inventory
is sold for consumption and a “stockout” occurs.

CoroLLARY 1.1 (Properties of J): In a rational expectations equilibrium with
Q,,0x > 0, there exists a nonempty set Qg of “sell states” such that for all
as € QO

(a) tnventory is reduced so that J(as,q) = (1 — 8)q for all q and

(b) a critical inventory level q, = 0 exists for each a, € O such that a
stockout, J(a,,q) = 0, occurs whenever previous inventory is suffi-
ciently low, q¢ < q,.

By construction, the equilibrium inventory and demand shock processes,
(a;, Q,), are jointly Markovian. However, the sequence of demand shocks,
{a,}_,, affects the inventory level, ,, because of the kink in the equilib-
rium condition (3). For example, a “sell state” followed by a “buy state” (in
which inventory is accumulated) does not necessarily lead to the same end-
ing inventory as vice versa. However, any time inventory “stocks out” (i.e., is
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driven to zero) the inventory process regenerates or renews.? This leads to
the useful property that the distribution of long-run inventory (and, hence,
of long-run prices) does not depend on current inventory.

CoroLLARY 1.2 (Regeneration): In the rational expectations equilibrium,

(a) stockouts occur with positive probability; in other words, the probabil-
ity of perpetually positive inventory, Prob(@, > 0, @,.1 > 0, @,. 5 >
0,...la,,Q,_1), is zero for any a, and Q,_1,
(b) the long-run probability distributions of future inventory and prices,
Qr and Py, are independent of current inventory, ,, as T — oo
(c) if the transition probabilities are all strictly positive, I1 > 0, then
(i) limiting inventory and price distributions exist and do not depend
on a, or Q,_; in that limy , Prob(Qr = qla,,Q,_1) = ¢g(q) and
limg. . Prob(Py = pla,,Q, 1) = ¢p(p), and

(ii) the limiting probability of a stockout is strictly positive, ¢g(0) €
(0,1].

Inventory cannot always be positive with positive carrying costs. Hence, stock-
outs occur and current inventory @, only has a temporary effect on future
(T > t) inventory, @, and prices, P. If, moreover, the Markov shock process
has an invariant limiting distribution, then the current net demand state a,
also has only a temporary influence.

C. Numerical Example

To implement our model we must specify a Markov process for the net-
demand shocks a,, the inverse demand function f, the storage cost rate &,
and interest rate r. Our baseline parameterization is a linear two-state spe-
cial case:

Ay = 1 ap = 0
(w(aHIaH) w(aLIaH)> <0.75 0.25)
II = = (5)
W(aH\aL) W(aL\aL) 0.25 0.75
P, = f(a,AQ) = a + AQ,

with a storage cost § = 0.1 and interest rate r = 0. Several features of this
example deserve comment. First, seasonality is easily added by introducing
cyclically moving subsets into the Markov structure.l® Second, future high
(low) demand states are more likely if the current state is high (low). Some

9 As is common in the study of inventory systems, the inventory process can be used to
define a renewal process over the stockout event. See Chapter 5 of Karlin and Taylor (1975).

19 For example, we could partition () into four seasons (), where k& € {A, W, S, M} with
positive transition probabilities 7(ala,) > 0 only if @ € Q) Where &2(t + 1) denotes the
season of date ¢ + 1.
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Figure 1. Numerical example of equilibrium inventory. The equilibrium outgoing inven-
tory, @,, is plotted as a function of the previous inventory, @,_;, in the high and low net demand
states given the baseline parameters of the numerical example: ay = 1, ¢, = 0, w(aylay) =
m(azlay) = 0.75, r = 0, and 6 = 0.1.

of our theoretical results on the volatility of forward prices assume that the
Markov process has this second property. Despite its simplicity, this two-
state, linear specification is able to generate endogenous binomial trees of
spot (and forward) prices with many interesting features.

Figure 1 shows the equilibrium inventory function @, = J(a,®,_,) for this
numerical example.!! Given the previous inventory @,_,, outgoing inven-
tory @, is greater in the low state a; than in the high state ay. In partic-
ular, J(ay,Q,—1) = (1 — §)Q,_, = J(a.,Q,_,) so that, consistent with
Corollary 1.2 (with just m = 2 states), inventory is accumulated in the low
state and consumed in the high state.

11 We calculate J(a,q) using a piecewise linear approximation for each a € () on an equally
spaced grid, G, with 1000 points. From an initial conjecture J,,, successive approximations o/,
are calculated in a fixed-point contraction mapping algorithm. For each ¢ € Q) and q € G,
J,.1(a,q) is the maximum of the solution to the equilibrium condition with equality (equation
(3a) and zero. This is very similar to the construction in the proof of Proposition 1. The con-
vergence rate is roughly 1 — &, requiring typically 20 to 50 iterations to be within tolerance of
the fixed point, J(a,q). See Deaton and Laroque (1992) for additional details. In Section III we
use a third-order polynomial approximation of J (in place of the discrete grid) to increase the
speed of the algorithm.
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II. Properties of Forward and Spot Prices

Define F, ;. ,(a,;,Q;_1) as the forward price agreed to at date ¢ for one unit
of the commodity to be paid for and delivered at a future date ¢ + n given the
information, a, and @,_,, available at ¢. Since traders are risk neutral and
the interest rate is nonstochastic, market clearing requires

Ft,t+n(at’Qt—1) = E[Pt+n|at’Qt—1]' (6)

Since forward contracts only involve payment at delivery ¢ + n, the carrying
costs, 6 and r, enter forward prices only indirectly through their effect on the
inventory and spot price processes.

For concreteness, Figure 2 illustrates the range of forward-price term struc-
tures possible in our numerical example.’2 Each forward curve is for a dif-
ferent combination of net demand shock, a; or a;, and previous inventory,
Q,_;. The forward curves are upward sloping in the low demand state a;,
and slope downward in the high demand state a; with a low (or zero) prior
inventory. When demand is high and the incoming inventory is at a moder-
ate level, then the forward curve can be “hump shaped.” In particular, for-
ward prices initially rise (i.e., P, = 0 E,[P,,,] < E,[P,.,] = F, ,,, since outgoing
inventory, @,, is positive), but eventually decline to a state-independent (con-
stant), long-term forward price, F,, (see Proposition 3 below). One artifact of
this two-state example is that the forward curves are identical in a stockout
since outgoing inventory is 0 (by definition) and the state is always ay. The
stockout spot prices differ, however, because of differences in the level of
incoming inventory. The result is the “fan” at F; ;. in the stockout states.

A. Inventory and Forward Prices

Inventory plays a crucial role as an endogenous state variable summariz-
ing the cumulative impact of past shocks, a,_1,a,_5,... in our model. To
understand its impact on prices, consider two equilibrium inventory and
price sequences that differ only by an (exogenous) perturbation to the initial

12 Calculating exact forward prices requires a tree of all possible future spot prices. Since the
inventory process is not recombining, each iteration to determine forward prices to horizon n
potentially requires, given m demand states, calculations on the order of m™. With a discrete
grid of 1000 levels of inventory, this produces a large (but sparse) Markov transition matrix
that can be used to calculate forward prices of any horizon as well as the limiting (uncondi-
tional) distribution. The impact of approximation errors on prices from rounding the inventory
level are limited by Proposition 2. One can improve the accuracy (or reduce the number of
discrete inventory levels) by choosing the inventory grid based on the equilibrium inventory
function. The renewal property implies that one only needs to track paths until inventory reaches
a stockout. Since stockouts happen with non-zero probability, most of the time inventory is
within only a few steps (i.e., demand realizations) from a stockout. For example, Figure 2 was
produced with just 100 points (carefully chosen) on the inventory grid. The 60 most likely
forward curves are shown.



Equilibrium Forward Curves for Commodities 1307

A: High Demand State a, = ay

1]
2
S
(=W
k)
<
B
—
o
5%

0.2

0.0 T T T T T T T

0 1 2 3 4 5 6 7 8 9 10
Horizon (Periods to Maturity)
1.0
B: Low Demand State a, = a;,

08 |
w2
Q
2
—
2%
k=]
:
i

02

0.0 : ‘ : ‘ ‘ , , ‘

0 1 2 3 4 5 6 7 8 9 10

Horizon (Periods to Maturity)

Figure 2. Forward curves. The 60 most common forward curves are depicted in the (A) high,
ay, and (B) low, a;, demand states in the numerical example with baseline parameters:
ag=1,a;, =0, wlaylay) = m(a,|a;) = 0.75,r = 0, and 6 = 0.1.

inventory. In particular, the path of demand realizations, {a,}, is identical
for the two sequences. The following proposition shows that spot and for-
ward prices are decreasing in initial inventory, but that the effect is only
temporary.
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ProprosiTioN 2 (Increase Inventory): Consider two inventory processes {Q,}
and a perturbed process {Q;} where @, = J(a,,Q,_1) and QF = J(a,,Q; 1). If
Qo = 0 and QF = x > 0, then for every realization of {a,};~;

(a) the perturbed inventory is (weakly) larger, but the difference shrinks
with time, 0 = QF — Q, < (1 — §)'x,

(b) the perturbed spot and forward prices are weakly lower, P} = P, and
Fyvn =F, ., forall n =0,

(C) hnzit—wo(Qgc - Qt) = O’ hmt—)oo(Ptx - Pt) = 0) 1imt—>oo(Ft9,Ct+n - Ft,t+n) = O)
an

(d) for all € € (0,1), there exists a date 7 such that Prob(Q} # @,) < € for
all t > 7.

Since the slope of J is less than 1 — §, any positive perturbation x reduces
the current and future net inventory changes A®,. Thus spot and forward
prices are lower. However, the perturbation is strictly temporary and dies
out at a rate (1 — 8)". This is why statements (a) to (c) hold path-by-path for
every sequence of demand shocks. Furthermore, after the first stockout in
the @ process, both inventory processes regenerate and are identical there-
after. Since inventory does not affect the probabilities of future demand shocks,
changes in inventory simply shift the probability distribution of future spot
prices. Although our focus is primarily on forward prices, Proposition 2 has
an obvious but important implication for option prices, as stated in Corol-
lary 2.1.

CoROLLARY 2.1 (Derivative Prices): The prices of European calls (and all other
derivatives whose payoffs are increasing in future spot or forward prices) are
decreasing in inventory in the stationary rational expectations equilibrium.

Since current inventory has no long-term impact, the equilibrium prices pre-
serve many of the features of the Markov structure of the underlying de-
mand shocks. For example, if all demand shocks have strictly positive
probability (Il > 0), then forward prices, F, ,,,, are bounded in a range that
tightens with the contract horizon, n, and a limiting forward price, F.,, ex-
ists that is invariant to the current demand state and inventory level.l3

Prorosition 3 (Forward Prices): In the stationary rational expectations equi-
librium of an economy with I1 > 0, two monotonic sequences, {F2..}v_o (wWhich
is increasing in n) and {F} . }v—o (Which is decreasing in n), bound forward
pricesF, .., E[F,.,,F..1forall t and n with lim,,_, F;;, =lim, , F;, =F,.
., is the unconditional mean spot price. In
general, it is hard to determine the effect of storage on the mean spot price.
Since storage is costly, less of the good is available for consumption, which
increases its price. However, storage also smooths shocks that may, de-

The limiting forward price, F,

13 With seasonal cyclical subsets in (), there is not a global limiting price distribution, but
rather one for each season.
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pending on the curvature of f, reduce the mean price. However, even if the
net-demand function f is linear, the effect of moving from efficient storage
(6 = 0) to no-storage (6 = 1) on F_, is not monotonic. Increasing §, holding
inventory constant, raises spot prices since more of the good is lost to the
storage cost. However, equilibrium storage also changes with 8. At low val-
ues of 8 (close to 0), an increase in storage costs raises the mean spot price
since the mean equilibrium inventory levels are large. However, for high
values of §, and, hence, lower equilibrium inventory levels, the mean spot
price decreases since less is lost to storage costs. In the limit as § — 1,
nothing is stored and nothing is lost to storage cost, the limiting forward
price, F._, is E[ f(a,,0)].

B. Net Demand Shocks and Forward Prices

The a, realizations influence spot and forward prices directly, through
current net demand, and indirectly, via the probability distribution over fu-
ture shocks. Due to these two influences, two further assumptions (in addi-
tion to (A), (B), and (C) in Section I.A) are used to give an unambiguous
order to the m demand states of (:

(D) For all A®, the inverse net demands are ordered with f(a;,AQ) <

- < flan,,AQ).
(E) First-Order Stochastic Dominance: for all a,, a;, € () where f(a,,AQ) <
f(aha AQ)’
% %
> m(ajlay) = > m(a;lay) (7
j=1 j=1

for all & = 1,...,m (with strict inequality for at least one %).

The first assumption, (D), says that the spot prices corresponding to the
net demand states have the same order regardless of the change in inven-
tory. The second, (E), states that the transition probabilities from high states,
a;, first-order stochastically dominate those from lower states, a,. In our
two-state example, this implies that shocks are persistent in that 7(ay|agy),
m(arlay) > 0.5. Under these two (sufficient) assumptions forward prices
have a particularly simple structure.

ProrosiTioN 4 (Increase Demand): In the stationary rational expectations equi-
librium of an economy satisfying (D) and (E),

(a) spot prices are ordered: P(a,,q) < --- < P(a,,,q),
(b) forward prices are ordered: F,; ,.,(a;,q) < --- < F, ,,,(a,,,q) for all
horizons t + n = t.

Part (a) establishes that if (D) and (E) hold, then inventory just smooths
spot prices in that the demand-state order of shocks in (D) is preserved in
the equilibrium spot prices. However, (D) alone is not sufficient for this
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spot-price ordering when (the number of states) m > 2. Without an assump-
tion on the conditional transition probabilities such as (E), a “low” demand
state (according to (D)) could be associated with a large probability of high
future demand. In such a case the resulting large equilibrium inventory
demand might induce a high spot price despite the low current demand. The
stochastic dominance assumption in (E), however, is sufficient to ensure that
low states lead to low equilibrium spot prices.

Part (b) of the proposition establishes that, given (D) and (E), the forward
prices also preserve the demand-state order. In other words, given any fixed
level of incoming storage, the forward curve in any state, a,, lies everywhere
below (i.e., does not cross) the forward curve in each higher-demand state,
Q¢i1s--+5a,,.- A key implication of Proposition 4(b) is that forward prices all
move in the same direction and, thus, that hedge ratios (using one maturity
forward contract to hedge another) are all positive.

A perturbation of the demand state from a low state a, to a higher state
a; has two effects on the distribution of future spot prices. First, the first-
order stochastic dominance assumption of (E) improves the distribution of
future demand states. Second, the perturbation affects current equilibrium
inventory. In the case where inventory is reduced, J(a,,Q,_1) < J(a,,Q;_1),
the effect on forward prices is reinforced. However, if inventory is increased,
J(a,,Q,—1) > J(a,,Q,_1), this partially offsets the improved demand state
distribution.l4 To see what can happen without an assumption like (E), con-
sider our simple two-state example. With just two states, {a;,az}, spot prices
at each date ¢ are ordered, P(ay,®, 1) > P(a,,Q,_1), even without (E). The
Markov process violates (E) if w(ay|ay) and 7(a,|a;) are less than 0.5. In
this case a realization of a; at time ¢ implies a higher conditional probability
of ay at ¢t + 1 than does ay at ¢. Thus, perturbing the current demand state
from a; to ay can lead to lower forward prices at odd horizons and higher
prices at even horizons. This will occur if the difference in AQ, is small (e.g.,
if § is large). Therefore without assumption (E), forward prices can move in
opposite directions.

C. Numerical Example (Continued)

Our numerical example has only two net-demand states, a; and ag, but
the dynamics of inventory induce an endogenous binomial tree of forward
curves over time. Figure 3 illustrates part of the tree. Four features deserve
comment. First, since the starting node here at ¢ is a stockout with zero
incoming inventory, this node and its two successors are repeated at date
t + 1 if the next shock is another high realization ay. This is the renewal
feature of inventory and prices (see Corollary 1.2). Second, the degree of

14 In economies with more than two demand states (m = 3), it is possible that higher demand
states may lead to higher current inventory levels. For example, if the lowest state has a very
high conditional probability of recurring, then equilibrium storage in that state can be zero
while storage in an intermediate state is strictly positive. Despite this, spot prices and forward
prices increase with the demand state.
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backwardation or contango of the forward curve depends on how much in-
ventory has been accumulated. Thus, an a; at ¢ + 1 (making inventory cheap)
can flip the curve from backwardation to contango. Third, the model can
also produce hump-shaped curves. Moreover, the hump moves further back
along the forward curve if a run of low shocks leads to a buildup of inventory
and thus pushes the possibility of a stockout further into the future. Fourth,
the tree is nonrecombining. The forward curve given a shock sequence {ay,a;}
is very different from the forward curve given the reverse sequence {a;,ay}
due to the equilibrium implication of the nonnegative inventory constraint.

D. Spanning

Although spot prices are binomial here, the inability to short the commod-
ity in a stockout limits the payoffs that can be spanned with the spot good.1>
However, our example is still dynamically complete using a bond and a one-
period forward contract. Therefore, our framework can determine a market
price of convenience yield risk in a more complex model with risk-averse
agents. This property can be extended to economies with binomial (rather
than just two-state) shock processes.16

ProrosiTiOoN 5 (Spanning): The market is dynamically complete using a one-
period forward contract and a riskless bond if at each date t the Markov
process is binomial and satisfies (D) and (E).

Unfortunately, extending this result to general Markov processes is not
straightforward. The path dependence of equilibrium inventory prevents the
use of standard arguments of generic completeness. The path dependence
implies that there are uncountably many paths. Therefore, in order to check
the dynamic completeness, one needs sufficient conditions for the payoff ma-
trix using forward prices and a riskless bond to be invertible for all incom-
ing inventory and demand state pairs. Fortunately, the two-state and binomial
settings are quite flexible.

E. Forward Curve Slopes

The relationship between contemporaneous spot and forward prices is usu-
ally described either in terms of the slope of the forward curve or with im-
plied convenience yields. We consider slopes first and then restate these
results for convenience yields in Section ILF.

15 In addition, replication with a long spot position is a dominated strategy in a stockout
(from equilibrium condition (3)). Ross (1976) and Breeden and Litzenberger (1978) discuss using
derivative securities to complete the market and Raab and Schwager (1993) consider replica-
tion with short-sale restrictions on some assets.

16 By binomial we mean that, given any shock a, at any time ¢, only two shocks a; € O have
positive probability, 7(a;|la,) > 0. In contrast to our ongoing example, these need not be the
same two shocks for each a,.
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Since forward prices are positive, we can define the one-period (scaled)
slope with respect to delivery horizon, n, as

Ft,t+n+1 - Ft,t+n

Ft,t+n

! j—
Ft,t+n -

(8)

A forward curve is in contango if it is upward sloping (F'' > 0) and in back-
wardation if it is downward sloping (F' < 0).17 Storage and interest carrying
costs make forward curves slope upward; negative slopes are possible due to
current or future potential stockouts.

ProrositioN 6 (Forward Slopes): The scaled slopes of forward prices in the
stationary rational expectations equilibrium are bounded by F/,., =
(r +6)/(1 — 8) for all t and horizons n = 1. Additionally, if 11 > 0, then

(@) if F/,y, < (r + 86)/(1 — 6) for a delivery horizon n, then F/, ., <
(r +8)/(1 — 8) for all later delivery horizons h > n,

(b) for every date t there is a future date ™™ = t such that the probability
of future backwardation, Prob(F, .., < 0la;,Q,_,), is strictly positive
for all dates 7 = 7%, and

(c) the forward curve at long horizons is “flat” with lim,_,, F/,,, = 0.

Part (a) follows from the equilibrium condition (3) and iterated expectations.
If outgoing inventory is positive, then condition (3a) holds and the forward
slope is positive and at its maximum, (r + 6)/(1 — 8), between P, and F, , ;.
If, instead, current inventory is zero and condition (3b) holds strictly, then
the slope is less than the maximum. Using iterated expectations, the argu-
ment extends to longer horizons. Parts (a) through (c) all use the assumption
that 7(ala,) > 0. If the probability of a stockout at a future date 7* > ¢ is
positive, then it is also positive at all longer horizons since “sell” states have
a positive probability of recurring. Strictly positive transition probabilities
also imply that the combination of the highest possible demand state and
zero incoming inventory has a positive probability. Since this produces the
highest possible spot price (P,,,.), the forward curve must have a negative
slope in this situation. Finally, a limiting forward slope of zero is an imme-
diate consequence of Proposition 3.

17 Some authors (e.g., Litzenberger and Rabinowitz (1995)) distinguish between strong and
weak backwardation. Strong backwardation occurs when the forward price is lower than the
spot price (i.e., F, .., < P,). Weak backwardation is when the forward price is lower than the
spot price adjusted for time value of money (i.e., F,,,, < P,(1 + r)"). Other authors (e.g.,
Keynes (1930)) use the term backwardation to refer to the (average) difference between forward
prices and the future spot price. Given risk neutrality here, we restrict attention to the con-
temporaneous spot-forward relationship.
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F. Convenience Yields

Another way to describe forward curves is in terms of convenience yields,
which express the interim benefits accruing to the physical owners of a com-
modity as a rate. In our model, this benefit is the timing option to consume
the good in high demand states (or to sell it for consumption by someone
else) and then buy it back at a lower expected price in the future. Given any
forward curve in our model, we can calculate the corresponding implied en-
dogenous convenience yields using the cost-of-carry relation. Thus, conve-
nience yields are an output of our model rather than an input as in Brennan
(1991), Schwartz (1997), and Amin et al. (1995).

The one-period convenience yield, y, .(a,,Q, 1), over the interval 7 to 7 + 1
given the spot and forward prices at date ¢ is defined implicitly by

1+ r\7T-tT-1
Ft,T(ataQtﬂ) = P(at,Qt1)< 1— 8) H (1 _yt,f(ath*l))' 9

Since interest rates and storage costs are constant here, this can be written
aslS

(1-8) Fo
A+r) F,. -

yt,T = (10)

Using this definition, the results in Proposition 6 can be rewritten to show
that the implied convenience yield in our model is always well defined and
nonnegative, and that y, . < 1.

ProrosiTioNn 7 (Convenience Yield): In the stationary rational expectations
equilibrium,

(a) implied convenience yields are nonnegative, y, , = 0,
(b) the convenience yield is positive, y, , > 0, if and only if the stockout
probability is positive, Prob(Q@, = 0) > 0, and
(¢) in an economy with 11 > 0,
() if y,., > 0, then y, ., > 0 for all later delivery dates, 71 > 7, and
(ii) the limiting convenience yield is constant with lim__,_y, =
6+ r)y/1 +r).

Convenience yields inherit their option-like quality from the embedded tim-
ing (i.e., storage) option in spot prices. Convenience yields are strictly pos-
itive only if there is a positive probability of a stockout (which is like an
option exercise). As in Proposition 6, if “sell” states repeat with positive prob-

18 This is the discrete-time analogue to the instantaneous convenience yield in continuous-
time models such as Amin et al. (1995) or Schwartz (1997). Convenience yields are typically
expressed net of storage. However, since storage costs are constant here, this distinction is not
important.
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Figure 4. Convenience yields versus spot price. The convenience yield is plotted at differ-
ent horizons against the corresponding spot price given the baseline parameters: ay = 1,
a;, =0, mlaylay) = m(ay|ay) = 0.75, r =0, and § = 0.1.

ability (e.g., if II > 0), then a positive convenience yield at one horizon
implies positive convenience yields at all longer horizons. Finally, the lim-
iting convenience yield, like the limiting forward price, does not depend on
the current demand state or inventory level.

Comparing the implied (equilibrium) convenience yields in our model with
the usual (exogenous) convenience yield processes reveals some differences.
First, our model does not reduce to a one-factor Brennan (1991) model where
convenience yield is exogenously specified as a function of the spot price.
Here, convenience yields are functions of both the exogenous demand state
and the endogenous inventory level. Second, Schwartz (1997) assumes that
innovations in spot prices and instantaneous spot convenience yields have a
constant correlation. This in turn implies that the correlation between spot
prices and convenience yields at longer horizons, y, , is also constant. In our
model, however, the correlation between the spot price and the one-period
spot convenience yield, y, ,, depends on the endogenously determined inven-
tory level, @, ; (Proposition 7(b)). In particular, y, , is nonzero only when
outgoing inventory is zero. At longer horizons the convenience yield y, , de-
pends (from Proposition 7(b)) on both the probability and likely severity of a
stockout at date 7 and, therefore, on the current inventory @Q,.

Figure 4 illustrates these points by plotting the implied convenience yields
versus the corresponding spot price in our numerical example. When the
current spot price is high at ¢, the corresponding one-period convenience
yield is also high. High spot prices are the result of both high current de-
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mand, az, and low incoming storage. This situation leads to a stockout. P, is
decreasing in incoming inventory since the inventory buffers the high de-
mand shock. However, F, ,; is unaffected in a stockout since outgoing in-
ventory is zero. This is the renewal feature seen in Figures 2 and 3. The
result is that y, , is decreasing in incoming inventory and is maximized when
Q,_1 = 0. At low spot prices, outgoing inventory @, is positive and, therefore,
Vet = 0.

At longer horizons, n > 1, the spot-price/convenience-yield relation is also
state-dependent, but the nonlinearity is much less dramatic. Compare, for
example, the convenience yield at the seven-period horizon, y, ,.,, with y, ,
in Figure 4. Since our limiting convenience yield is constant, the spot-price/
convenience-yield correlation falls to zero (i.e., a constant) as the horizon
lengthens. The convenience yield y, ,., depends on the probability of a fu-
ture stockout at date ¢ + n and its likely severity. The probability and se-
verity depend on the current state and inventory. However, due to the renewal
feature, the dependence on the current state at very long horizons is small.1?

G. Conditional and Unconditional Volatilities

The volatility of forward prices at different horizons is important for both
derivative security pricing and dynamic hedging. Empirically, commodities
typically exhibit a pattern of forward price volatility which is declining with
contract horizon known as the Samuelson (1965) effect. This is usually at-
tributed to the smoothing of expectations over a mean-reverting process.
However, in our model the Samuelson effect need not hold conditionally in
all states at all horizons.

Prorosition 8 (Volatility): In the stationary rational expectations equilibrium
of an economy with 11 > 0, the volatility of forward prices satisfies the following:

(a) There is a horizon N such that for all a, € Q and q,_, the conditional
forward price variance, var(F, . ;,1.,|@;,9;—1), is decreasing in the
horizon length n for all n > N.

(b) There is a demand/inventory /contract-horizon combination (a,,q*,N)
such that the conditional forward price volatility, var(Fy. 1 ;14 ,10:,9:—1),
is tncreasing in n for short horizons n = N when inventory is suffi-
ciently high, q,_1 = q".

Part (a) says that, for sufficiently long horizons, forward price volatilities
decline with maturity regardless of the current demand state and inventory.
This follows immediately from Proposition 3 where the tightening bounds on

19 In Figure 4 the fact that the convenience yield can take two possible values at some
intermediate spot price levels (e.g., around 0.42 for y, ,,,) is an illustration that our conve-
nience yield cannot be represented as a function of only the spot price as in Brennan (1991). A
low state a; and low inventory or a high state a and high inventory can both lead to the same
spot price. However, since the forward prices are different in these situations, so are the im-
plied convenience yields. Of course in our two-state example, very high spot prices are only
consistent with az. Note this feature can also be observed in y, ,,5 and y, ,, 7.
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Figure 5. Conditional dispersions. The conditional dispersion, F,; ;. ,(@x,q,) = Fii1 s,(@1,q,),
of date ¢+ + 1 futures prices is plotted for different horizons, n, as a function of the date ¢
inventory, q,, given the baseline parameters: ay = 1, a; = 0, w(agylay) = 7w(ayla,) = 0.75,
r=0,and 6 = 0.1.

forward prices and existence of a limiting forward price, F_,, are conse-
quences of the finite Markov structure (with I1 > 0) and the regeneration
property of inventory. However, part (b) states that conditional violations of
the Samuelson effect can occur at shorter horizons. In particular, when cur-
rent inventory is high, the spot price is less volatile than the short horizon
forward. Fama and French (1988) document empirically such a relation be-
tween inventory and the conditional volatilities of different horizon forward
prices.

The relation between volatility and inventory is easily seen in our two-
state numerical example. Consider the difference F, ,.,(ayz,Q,—1) —
F, , ,(a;,Q,; 1) as a measure of conditional dispersion. Since the probabil-
ity at ¢ — 1 of the forward prices F, ,,,(ay,Q,—;) and F, ,,,(az,Q, ;) at ¢
are just m(ayg|a,_;) and w(a,|a,_,) regardless of the particular forward
horizon n, conditional dispersion is one-to-one increasing in volatility in
this example. In Figure 5 the conditional dispersions are ordered by con-
tract horizon n at low inventory levels. In particular, if inventory is zero
(®,_, = 0), the dispersion (volatility) is determined solely by the Markov
demand process and, therefore, declines with maturity. However, at high
levels of current inventory @,_;, forward price volatilities are potentially
increasing in maturity at several horizons. With enough inventory, stock-
outs may not be possible for n periods so that the n-period forward price is
simply the spot price scaled up by the cost-of-carry relation, F, ,., = 6 "P;,
where 6" > 1 (see equation (3a)). In such cases, the longer-term (n pe-
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riod) forward prices will be more volatile than the shorter-term (n — 1
period) forward prices. In Figure 5, for example, the volatility of the four-
period forward price exceeds that of the one-period contract when inven-
tory exceeds half of its endogenous maximum, @,,,.. In this case, there is
little probability of a stockout in the next three periods. In contrast, the
volatility of the eight-period contract is always lower than the volatility of
shorter horizon contracts. The probability of a stockout eight periods later,
even if inventory is near its endogenous maximum, is always large. Fi-
nally, if storage is costly enough (large §) so that inventory is always low
(small @,,..), then expectations of future spot prices are not heavily influ-
enced by inventory and conditional violations of the Samuelson effect do
not occur (in particular, if @,,,, = 0).20

Inventory directly affects the unconditional volatility of forward prices.
Deaton and Laroque (1992, 1996) and Chambers and Bailey (1996) show
that storage smooths the impact of demand shocks on the spot price. This
smoothing, in turn, influences the unconditional forward price volatilities. A
high cost of storage, §, leads to relatively few transmission of shocks via
inventory across periods and forward price volatility declines rapidly in the
forward horizon (due to the Markov property). In contrast, with a low &
considerable transmission of shocks from short horizons to longer horizons
occurs via inventory, hence forward price volatility declines less rapidly. These
intertemporal volatility smoothing effects of inventory (and their depen-
dence on ) can be significant as illustrated in Figure 6 for our numerical
example. As discussed below in Section III, they are also important in cali-
brating our model to oil futures prices.

H. Conditional Hedging

The large losses of Metallgesellschaft in 1993 generated widespread in-
terest in how to hedge long-horizon forward positions dynamically using short-
horizon futures contracts.2! In our model, short-term and long-term forward
prices differ in that long-term forward prices do not include the interim
option to consume the good between the two delivery dates. Since the value
of this timing option depends on the likelihood of a stockout during this time
interval, hedge ratios are state dependent. They depend on the current de-
mand state and inventory level.

20 There are other explanations for violations of the Samuelson effect. For example, it is
straightforward to generate violations of the Samuelson effect in the absence of inventory by
introducing a seasonal component to the demand shocks (see, for example, Anderson and Dan-
thine (1983)). Alternatively, Hong (2000) generates violations of the Samuelson effect in a model
with exogenous, mean-reverting convenience yield and asymmetric information. He constructs
a model where the informativeness (hence, the volatility) of the forward price decreases as
contracts mature. This information effect offsets the convenience yield mean-reversion and can
produce a U-shaped term-structure of volatility.

21 See Culp and Miller (1995), Edwards and Canter (1995), and Mello and Parsons (1995) for
discussions of Metallgesellschaft and see Ross (1997), Neuberger (1999), Brennan and Crew
(1997), and Ronn and Xuan (1997) for more generic treatments of hedging long-dated exposures
with near-term contracts.
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the storage cost, 8, is varied.

This general point is easily illustrated in our two-state example. If a short-
term forward (with delivery at date 7) and a riskless bond are used to hedge
a long-dated forward (with delivery at 7' > 7) between dates ¢t and ¢ + 1, then
the number of short-dated contracts needed is

Ft,T(aHaq) - Ft,T(aLaq)
Ft,T(aH;Q) - Ft,T(aL’q)

1+r)T (11)

The hedge ratio in equation (11) is just the ratio of the two conditional dis-
persions (from the previous section) with an adjustment for the different
timing of cash flows for the two forward contracts. Properties of the hedge
ratio are an immediate corollary of Propositions 4 and 8.

CoroLLARY 8.1 (Hedge Ratios): In a two-state economy with Q0 ={a;,ay} and
I1 > 0, the hedge ratio in equation (11) at date t is:

(a) positive if the economy satisfies (D) and (E)

(b) less than one for large T — 7

(c) greater than one for a sufficiently small T — 7 and large enough in-
ventory, q.

Figure 7 plots the hedge ratio for hedging an n-period forward using a one-
period forward and a riskless bond (recall that » = 0 here). The declining
long-horizon volatilities from Proposition 8(a) imply that hedge ratios for
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Figure 7. Hedge ratios. The figure plots the number of one-period forward contracts (with
forward price F, ,. ;) needed to create a riskless hedge for one longer-horizon n-period contract
(with forward price F, ,.,) given the binomial tree induced by the baseline parameterization:
ag =1,a; =0, mlaylay) = m(a,|ay) = 0.75,r = 0, and § = 0.1.

very long-dated contracts (e.g., n = 8 in Figure 7) are less than one. How-
ever, the hedge ratio for intermediate horizons can be larger than one with
enough inventory. For example, the hedge ratio for a four-period (n = 4)
forward exceeds one when @, > 0.99.

ITI. Calibration

This section illustrates how to calibrate two versions of our model to mar-
ket data. The first version is a one-factor power specification that nests our
ongoing numerical example. The second version is a multifactor generaliza-
tion that allows for permanent as well as transitory shocks. The commodity
used in this calibration is crude oil for the post-Gulf war period of 1992
through 1996. Our data are daily futures prices for the Nymex light sweet
crude oil contract. The data are sorted by contract horizon with the “one-
month” contract being the contract with the earliest delivery date, the “two-
month” contract having the next earliest delivery date, etc. We consider
contracts with up to 10 months to delivery since liquidity and data avail-
ability are good for these horizons. As is typical, spot prices are not available
(see Schwartz (1997)).

Of the many possible calibration approaches, we follow Backus and Zin
(1994) and calibrate the model to the historical means and standard devia-
tions. In particular, we try to replicate the unconditional and conditional
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moments of futures prices (see Figure 8). In calculating conditional moments
we classify the futures curve at each date ¢ as to whether one month (20
trading days) earlier the curve was in contango or backwardated (based on
the then prevailing one-month and six-month prices). Not surprisingly, the
conditional mean futures curve at ¢ still tends to be in contango or backwar-
dation a month later. More interestingly, the term structure of conditional
futures price volatilities differs following backwardation or contango. It is
precisely this type of heteroskedasticity which inventory induced in our model
in Section II.

In calibrating the model, our goal is not to test the model formally. Rather
we simply want to identify dimensions along which extremely parsimonious
specifications of the model do and do not work well.

A. One-Factor Calibration

Our first specification is a slight generalization of our ongoing two-state
numerical example. Instead of the linear specification, we allow for some
curvature by assuming a power specification for the inverse net demand
function

P, = f(a,,AQ,) = (a, + AQ,)" (12)

We continue to use a simple two-state Markov process. However, in order to
facilitate interpreting the calibrated parameters we choose the two-state Mar-
kov process to approximate an AR1 process, {A,}.

A, = (1= pa)pa+pad, + (1 —pa) 046, (13)

where €, is an i.i.d. standard normal. The unconditional mean and variance
for A, are u, and of and the autocorrelation is p,. The model parameters,
ay, ar, I1, are calculated from equation (13) using the standard discretiza-
tion method (see Tauchen and Hussey (1991)). This specification is easily
extended to include more demand states.

From Proposition 1(c) any exponent a > 0 is permissible as long as the
discretized a values are all constrained to be positive. For the oil calibration
parameters we considered, this constraint is not binding.22 The linear nu-
merical example discussed previously is the special case of @ = 1.

Calibration involves picking the curvature « of the net demand and the
mean u,, volatility o2, and autocorrelation p, for equation (13). For sim-
plicity we fix the carrying charges r and 8. The interest rate r is fixed at a
monthly rate of 0.04/12 or 0.33 percent. We justify this by noting that com-
modity prices are considerably more volatile than interest rates. Moreover,

22 Since the search algorithm may explore candidate (i.e., nonequilibrium) inventory func-
tions which could result in a, + AQ, < 0, the algorithm sets « = 1 whenever it encounters a, +
AQ, = 0. This “off equilibrium” numerical assumption plays no role in the final equilibrium
solution.
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Figure 8. Unadjusted forward price (A) means and (B) standard deviations—empirical
and “basic model.” The data are the daily Nymex crude oil futures prices from 1992 to 1996.
For the data, the unconditional (U) moments are the sample averages and standard deviations
and the conditional moments given backwardation (B) and contango (C) are conditioned on the
shape of the forward curve one month (20 days) prior. For the “basic model,” the unconditional
moments (U) are calculated from the limiting Markov distribution. The conditional moments
(B) and (C) are calculated using the limiting Markov distribution, conditioning on the shape of
the curve one month prior.
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Schwartz (1997) finds that empirically an interest rate factor does not add
much in explaining futures prices with less than a year to delivery. We also
fix the storage cost 6 to a monthly value of 0.0025 or 0.25 percent. This is
significantly lower than what is implied by positively sloped forward curves
in the data (using equation (3) to back out a bound on §). However, a small
6 is needed for inventory in our model to play an important role. Deaton and
Laroque (1992) also found that storage costs implied by the data were quite
low. We chose to fix the & (after some preliminary exploration) to avoid ex-
tremely low values of § where the numerical approximation of the inventory
function is less precise.

The calibration problem is as follows: Let w € {U, B, C} index whether the
futures price moments are unconditional (U) or are conditioned on the pre-
vious month’s futures curve having been backwardated (B) or in contango
(C). For each w let ,,(w) and J,,(w) denote the mean and standard deviation
of the n-period futures (i.e., forward) price in the model2? and let u,(w) and
0, (w) denote their empirical counterparts from the Nymex data. Since prices
are stationary in the model, these are price levels rather than returns (e.g.,
as in Schwartz (1997)). We then minimize the difference between the mo-
ments in the data and those implied by the model

10 10
min > < 2 (@) = pu(@)]® + 21[(%(&)) - (fn(w)]2>- (14)

{narof,pas0t e, B,Cy \ n=1

The solution to equation (14) is reported in the unscaled “basic model” col-
umn of Table I along with various diagnostic statistics. Figure 8 plots the
empirical and calibrated means and standard deviations. The model fits the
unconditional volatility term structure extremely well. To do this, however,
it needs a high level of autocorrelation (p, = 0.64). This is similar to results
in Deaton and Laroque (1992, 1996). However, the model has difficulty match-
ing the conditional volatilities. Not only are they too low in the model, but
their ordering (i.e., given backwardation and contango) is opposite from the
data. The model also is unable to replicate the conditional means. Part of
the problem is that inventory given backwardation is too low (with a mean
of 0.97 units) and not variable enough (with a standard deviation of 1.75).24
As a result, the price variability following backwardation is induced largely
by just the shock process. Despite the high persistence of the calibrated
shocks, the model volatilities die off too quickly relative to the empirical
conditional volatilities. Thus, the model is unable to match both the condi-
tional and unconditional moments of futures prices simultaneously.

23 Also recall that constant interest rates imply forward and futures prices are identical (see
Cox, Ingersoll, and Ross (1981)).

24 Inventory is measured in units needed to move the spot price $1 in the case of @ = 1. Thus,
if an extra 1.75 units of inventory were “dumped” on the market all at once, prices would be
depressed by $1.75.
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Table I

Calibration Results

Empirical moments are reported for daily Nymex crude oil futures prices from 1992 to 1996
and the model parameters and summary statistics calibrated to these data. In columns 1 and
2 the futures prices are unscaled for both the data and the “basic model.” In columns 3, 4, and
5, the futures prices for the data, “basic model,” and “augmented (full) model” have first been
normalized by the 10-month futures price as follows: (F; ,.,,/F, ;.10) X mean(F, ,.,). A forward
curve is classified as being in backwardation (or contango) if the one-month and six-month
forward prices satisfy F, ;. — F, ;.1 < (>) 0. A forward curve has a hump from the spot price
if P, <F,,.,and F, ,.; > F, ;5. Similarly, a forward curve has a hump from the one-period
forward price if ¥, , ., <F, ,,o and F, ;.5 > F, ,. 3. The conditional moments for inventory (and
for forward prices in Figures 8, 9, and 10) are conditioned on the shape of the forward curve one
month prior.

Normalization
Unscaled By Ft,t+10 By Ft,t+10 By Ft,t+10
Basic Basic Augmented
Data Model Data Model Model
Parameters
Demand state mean A 16.1992 16.1992 17.7732
Demand volatility os 6.9988 6.9988 9.8742
Demand state autocorrelation py 0.6370 0.6370 0.2462
Proportional storage cost ) 0.0025 0.0025 0.0025
Curvature of net-demand a 1.0092 1.0092 1.0172
Interest rate r 0.33% 0.33% 0.33%
Forward prices
Means reported in Figures 8(a) 8(a) 9(a) & 10(a) 10(a) 9(a)
Standard deviations reported 8(b) 8(b) 9(b) & 10(b) 10(b) 9(b)
in Figures
Skewness of F, , 6.199 0.387 0.773 0.784 0.868
Kurtosis of F, ;. 1.792 -1.622 0.566 —1.253 0.025
Frequency backwardation 59.81% 32.00% 59.81% 32.00% 30.75%
Frequency of hump (from Spot) n/a 4.44% n/a 4.44% 13.34%
Frequency of hump (from F, ;) 19.03% 3.02% 19.03% 3.02% 8.31%
Equilibrium inventory
Unconditional mean 21.981 21.981 18.855
Mean conditional on backwardation 0.969 0.969 4.224
Mean conditional on contango 31.870 31.870 25.350
Unconditional standard deviation 17.102 17.102 12.457
Standard deviation conditional on 1.753 1.753 3.744
backwardation
Standard deviation conditional on 11.096 11.096 8.979
contango

B. Multifactor Calibration

The difficulty with the previous calibration stems from the long-horizon
variance of futures prices. As documented in Schwartz (1997), the variance
of long-horizon (e.g., seven-year) futures prices is substantial. To account for
this, our second specification models the inverse “immediate use” net de-
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mand as having two random shocks, one of which is permanent. The result
is an equilibrium version of Schwartz and Smith (2000) in which prices have
both permanent and transitory components, but where the impact of the
transitory shocks is asymmetric depending on the level of inventory.

We add permanent shocks so that they are separable in that they do not
affect the equilibrium condition equation (3) and therefore preserve the equi-
librium inventory. This preserves many attractive features of the model. Con-
sider two hypothetical economies. In the first the inverse net demand, f, is
driven by a single transitory process, a,, as in Section I. In the second econ-
omy, denoted with “*” superscripts, we augment the net-demand function
with an additional random variable b,. Define

P =f"(a;,b,,AQ,) = b,f(a,,AQ,). (15)

The goal is to specify a process for b, which elevates long-horizon forward
price volatility without changing the equilibrium inventory dynamics. In par-
ticular, we want J *(b,a,q) and J(a,q) to be identical across the two economies.25

ProprosITION 9 (Augmentation): If b, > 0 and follows a random walk satisfy-
ing E,[b,,1f(a,,1,AQ)] = b,E,[ f(a,.1,AQ)] for all AQ, then inventory in the
two economies is identical, J*(b,a,q) = J(a,q), for all a, b, q, and prices are

P/ =0b,P,
(16)
F:Hn = tht,t+n'

In our calibration we use a lognormal specification with In(b,.,/b,) ~
N(—%02,0?) which is independent of a,. This choice is the discrete time
analogue of the lognormal permanent process in Schwartz and Smith (2000)
except that our drift is zero. Intuitively, this allows the transitory net
demand shock, a,, and endogenous inventory, @,, processes to match the
shape of the forward curve while the permanent factor, b,, accounts for
changes in the curve’s level. From equation (16), the scaled slope of the
forward curve in equation (8) satisfies F;",,, = F},,,. Therefore, all of the
properties concerning the shape of forward curves and their implied con-
venience yields are preserved.26

25 One numerical benefit of this construction is that it avoids the “curse of dimensionality”
since solving for J* in the multifactor economy is exactly the same as solving for o in the
original one-factor economy.

26 Another way to introduce permanent shocks is with an additive shock where
f*(b,a,,AQ,) = b, + f(a,,AQ,). The same logic establishes that J* =J if b, = 0 and E,[b,.;] =
07'b,. The resulting spot and forward/futures prices are P; = b, + P, and F;,,, =
6" b, + F, ,.,. In this setting, long-dated forward prices are rising (rather than flat) in the
horizon, n, because the additive permanent shock has positive drift (¢! > 1). Finally, note that
the additive and multiplicative shocks can be easily combined to form a three-factor model.
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Prices are nonstationary in the augmented model so we break the calibra-
tion into two steps. The first step is to calibrate the short end of the futures
curve relative to the level of the long end. We do this by defining normalized
forward prices by dividing through by the contemporaneous 10-month for-
ward price,

~ Ft,t+n

Ft,t+n = F X mean(Ft,t+10)a (17)
t,t+10

for both the data and the model. Scaling the normalized prices by the con-
stant mean is done solely to facilitate comparison to the basic model. Nor-
malized prices and calibration parameters are of the same order of magnitude.

Analogously to equation (14) for the one-factor model, we choose the pa-
rameters of the stationary component of prices, curvature «, and the param-
eters for the discretized AR1 process, w4, 0%, and p,. As before, the storage
costs are held constant at § = 0.0025 and r = 0.04/12. The parameters are
chosen to minimize equation (14) redefined for the normalized prices of equa-
tion (17).

The second step of the calibration is to set the volatility, o2, of the per-
manent shock, b,, to match the unconditional volatility of the raw (unnor-
malized) 10-month futures price log returns. Given separability, this pins
down the variability of the long end of the futures curve. The initial level of
the permanent factor, by, is chosen to match the empirical level of the un-
adjusted forward prices. This two-step procedure uses the 10-month price as
a numerical proxy for F, ., which in our basic model is constant. Looking at
Figures 8a and 8b, for crude oil the conditional and unconditional moments
in the data appear to have converged for the 10-month futures. This sug-
gests that the pricing of contracts with 10 months or more until delivery is
driven primarily by permanent factors rather than short-term shocks or in-
ventory dynamics.

Table I reports the calibrated two-factor parameters in the Augmented
Model column and Figure 9 plots the empirical and fitted moments. To com-
pare the augmented and basic models, Figure 10 re-presents the results for
the basic model (in Figures 8) in terms of normalized prices. The two-factor
model closely matches both the unconditional and the contango volatilities.
The fit of the backwardation volatilities is also dramatically improved. In-
ventory now plays a greater role in the backwardation state (with a mean of
4.2 and volatility of 3.7). This is a consequence of the fact that (with the
permanent factor b,) the persistence of the transitory shock, p,, is greatly
reduced (to 0.25 from 0.64). Some additional statistics are also reported in
Table I which, although not used in the actual calibration equation (14), are
useful diagnostics. Backwardation is still more frequent in the data than in
the model (60 percent vs. 31 percent) which explains why the model under-
shoots the unconditional mean futures curve despite the good fit of the con-
ditional means. Hump-shaped curves (i.e., initially rising, then falling with
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Figure 9. Adjusted forward price (A) means and (B) standard deviations—empirical
and “full model.” The data are the daily Nymex crude oil futures prices from 1992 to 1996. All
prices in the data and in the model have been normalized by the 10-month futures price as
follows: (F, ,.,/F; ;+10) X mean(F, ,.10). For the data, the unconditional (U) moments are the
sample averages and standard deviations and the conditional moments given backwardation
(B) and contango (C) are conditioned on the shape of the forward curve one month (20 days)
prior. For the “full model,” the unconditional moments (U) are calculated from the limiting
Markov distribution. The conditional moments (B) and (C) are calculated using the limiting
Markov distribution, conditioning on the shape of the curve one month prior.



1328 The Journal of Finance

A: Mean Normalized Forward Price

|

20.00 - 1 —t—Data-U
i
1

2 |
3 |=—6—Model-U
S ‘-———A——-Data—B
8 19.00 —A—Model-B |
=} odel-B 1
= T - o S
1 Y S SR A - SR S EE w-- Data-C |
. |
= 18.00 ¥-" 7 gt A 54&\3 |-~ Model-C |
E% ________ Geeere SRR B
17.00 -
? \
16.00 ‘ ; — —
1 2 3 4 5 6 7 8 9 10
Horizon (Months to Maturity)
B: Standard Deviation Normalized Forward Price
3.00 e |
2.50 +
@
g o
g 2.00 - =——Data-U
T:’ Q== Model-U |
2 ——4- Data-B
<
E ........ A Model-B
&) ®-- Data-C |
T @-- Model-C |
el
(=}
8
5]

Horizon (Months to Maturity)

Figure 10. Adjusted forward price (A) means and (B) standard deviations—empirical
and “basic model.” The data are the daily Nymex crude oil futures prices from 1992 to 1996.
All prices in the data and in the model have been normalized by the 10-month futures price as
follows: (F, ., /F; ;+10) X mean(F, ,,10). For the data, the unconditional (U) moments are the
sample averages and standard deviations and the conditional moments given backwardation
(B) and contango (C) are conditioned on the shape of the forward curve one month (20 days)
prior. For the “basic model,” the unconditional moments (U) are calculated from the same lim-
iting Markov distribution used in Figure 8. The conditional moments (B) and (C) are calculated
using the limiting Markov distribution, conditioning on the shape of the curve one month prior.
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time until delivery) are also less frequent in the model (8 percent vs. 19 per-
cent) although this is improved from the basic model (with only 3 percent).
The unconditional distribution of the one-month futures price is slightly more
positively skewed in the model (0.87 vs. 0.77), but less kurtotic (0.03 vs.
0.57). The absence of “fat tails” is, in part, simply a consequence of the
two-point distribution for the transitory shocks. Note also that the fitted « of
1.017 is effectively a linear specification. In light of the augmented model’s
simplicity, the model fares surprisingly well.

IV. Conclusions

In this paper we have developed a simple equilibrium model of commodity
forward curves. In particular, rather than exogenously assuming stochastic
processes for spot prices and convenience yields (or, equivalently, forward
prices), we derive the spot and forward price processes induced by a mean-
reverting “immediate use” net-demand process and the resulting equilib-
rium inventory dynamics. We argue that forward curves for commodities
differ from those for stocks or bonds because of a timing option in the own-
ership of the physical good. When inventory is stocked out (or low) and the
current net consumption demand is high, forward prices in the model are
backwardated—or, equivalently, imply positive convenience yields—even in
the absence of explicit service flows. We also investigated the volatility struc-
ture of forward prices and hedge ratios for forward positions at different
horizons. Finally, we presented a tractable two-factor augmentation that helps
in calibrating the model to both the unconditional and conditional empirical
futures price volatility term structures.

Appendix

Preliminary to the proof of Proposition 1 (Equilibrium), we demonstrate
existence of the equilibrium inventory function J(a,q) as the limit of a se-
quence of finite-horizon economies as the finite horizon T'— co. Let J (¢t,a,q;T)
represent the equilibrium inventory function at date ¢ in an economy with a
finite horizon, 7. It is helpful to extend the function so that J(¢,a,q;T) = 0
for ¢ < 0. We suppress the dependence on horizon T unless needed.

LemMa Al: Given a finite horizon, T, for all a € O, q € R, and t = 1,...,T,
equilibrium inventory J(t,a,q) exists, is continuous in q, and satisfies the
finite-horizon analogue of equation (4),

0=J(ta,q+e)—J(taq) <(1-2de (A1)

Proof of Lemma Al: The proof is by induction. Given a finite horizon T,
f(a,AQ) > 0 implies that J(T,a,q) = 0 for all « € () and ¢ € R, . Note that
J(T,a,q) is continuous in ¢ and satisfies equation (Al). Assume now that for
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timet + 1, J(¢ + 1,a,q) = 0 exists, is continuous in g, and satisfies equation
(Al). We construct J(¢,a,q) as follows. Consider the following version of the
equilibrium condition given in equation (3a):

fla;,q" = (1 =0)q) = 0E,[ f(a,J(t +1,a,q") — (1 = 8)g")]. (A2)

The left-hand side is continuous and increasing without bound in ¢*. On the
right-hand side, for each a, f(a,A®) is decreasing in g* since J(¢ + 1,a,q)
satisfies equation (A1l). Therefore if ¢* exists, it is unique and finite. Define
J*(t,a,,q) = q*. If the left-hand side of equation (A2) exceeds the right-hand
side for all ¢g*, define J*(¢,a,q) = —co. Since inventory is restricted to be
nonnegative, this case has no effect on the equilibrium construction. To ver-
ify that J* satisfies equation (Al) (when J* > —c0), perturb g by e > 0. Let
J*(t,a,,q +€) =J (t,a,,q) + £ = q* + £ Inserting this into equation (A2)
and rearranging implies that

fla,q" =1 —=6)g +[§— (1~ 0)e])
=0E,[f(a,J(t +1,a,q") — (1 —-08)g" +[D(a,§) —(1-0)¢D],  (A3)

where D(a,é) = J(t + 1,a,q" + &) — J(t + l,a,q") < (1 — §)¢& for all
a € Q (from equation (Al)). At ¢ = 0, the left-hand-side of equation (A3) is
smaller than the right-hand-side. At ¢ = (1 —§)e, the left-hand-side ex-
ceeds the right-hand-side. Therefore, 0 < ¢ < (1 — 8)e and J *(¢,a,,q) sat-
isfies equation (A1l). This also establishes that J* is continuous in ¢. Finally
note that if J*(¢,a,q) < 0 then

fla;,—(1 =6)q) > 6E,[ f(a,J(t + 1,a,0))]. (Ad)

Therefore J (¢,a,q) = max[J "(¢,a,q),0] satisfies the equilibrium condition (3),
is continuous in ¢, and satisfies equation (Al). Q.E.D.

LemMa A2: Given a finite horizon, T, for alla € Q, g € R, and t = 1,...,
T-1,J(ta,q;T)=J&+ 1,a,q;T).

Proof of Lemma A2: The proof is a straightforward induction using equa-
tion (A2) attand ¢t — 1. Q.E.D.

Lemma A3: Given a finite horizon, T, a time-independent upper bound, K +
(1 — 8)q, for inventory exists such that J(t,a,q) = K+ (1 — 8)q for all a € ),
geER,_ ,andt=1,...,T.

Proof of Lemma A3: Define P,,,. = max,cq[f(a,0). Using equation (A2)
and the fact that 6 < 1 (costly storage), an induction argument establishes
that f(a,J(¢,a,q9) — (1 — 8)q) = P,,,, for all dates ¢ = T, states a, and inven-
tory level q. For each state a, define K, to solve f(a,K,) = P,,,,.. Since [ is

ax*
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increasing without bound in K, K, is finite. Define K = max,cq K,. Using
equation (A2), J(¢t,a,0) = K (i.e., it is never an equilibrium to accumulate
inventory such that the buying price exceeds the maximum possible selling
price). Finally, by equation (Al), J(¢,a,q) = K + (1 — §)q. Q.E.D.

LEmMA A4: For all a € Q and g € R, J(a,q) = lim,_, J(1,a,q;T).

Proof of Lemma A4: Given that we are taking the limit as 7' — oo, fixing
t = 1 is arbitrary. Since J(1,a,q;T) is nondecreasing in 7' (Lemma A2) and
pointwise bounded (Lemma A3), the limit exists by the monotone conver-
gence theorem. Q.E.D.

Proof of Proposition 1:

(a) Established in Lemma A4. The limit preserves the relevant properties
established in Lemma Al.

(b) For each a € Q, define Qa such that Qa = J(a,Qa). If for some a,
J(a,0) = 0, then @, = 0 and by equation (4), J(a,q) < g. If for some
other a, J(a,0) > 0 then by equation (4), J(a,q) crosses the 45° line
once from above. Hence for each a, @, is unique. Define @, =
max,cq @,. By construction, for ¢ € [0,Q,,..1, J(a,q) = @,,.. and for
some a, J(@,Q4x) = @max-

(c) By definition, P(a,q) = f(a,J(a,q) — (1 — 8)q). Therefore, by equation
(4) and the properties of f, the equilibrium spot price is continuous
and decreasing in q. This implies that P,;, < P(a,q) < P,,,. where
P,.,=ming,cq P(a,Q,,,) > 0and P, = maxy,cq, Pla,0) <. Q.E.D.

Proof of Corollary 1.1 (Properties of J): Since J(a,q) is continuous in ¢ and
satisfies equation (4), to establish (a) and (b) it is sufficient to show that
there exists an a € () such that J(a,0) = 0. Suppose not, so that J/(a,0) > 0
for all a € Q. This implies that, for all a, € Q,

f(ataJ(atao)) = eEt[f(at+laJ(at+laJ(at70)) - (1 - B)J(aho))]
f(a;,0) < O0E,[ f(a; 1,J(a;+1,0))] (A5)
f(at’O) < enEt[f(at+n7J(at+n’O))]'

The first line follows since equation (3a) holds when J(a,q) > 0. The second
line follows from the fact that the left-hand-side is increasing and the right-
hand-side is decreasing in current storage (using equation (4)). The third
line follows from recursively applying this step n times. Since # < 1 and
f(a,0) > 0, this is a contradiction because the inequality cannot hold for
large n. To establish (b), recall that J(a,q) is weakly increasing and contin-
uous in g (see equation (4)). Q.E.D.
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Proof of Corollary 1.2 (Regeneration): Part (a): Consider arbitrary a, and
Q;_;. The proof is by contradiction. Suppose that Prob(Q, = 0|a,,Q,_;) =0
for all 7 =¢,...,t + n. This implies that the equilibrium condition (3a) holds
for all 7 = ¢,...,¢t + n. Repeatedly substituting equation (3a) and applying
the law of iterated expectations yields

flag,d(a;,Q-1) — (1~ 0)Q;-1)
= 0E,[ f(a;i1,d(a1,Q) — (1 —8)@Q,)] (A6)
= 0"E, [ f(a1nd(@sin;@iin-1) — (1= 8)Qyyp1)].

Since f(a,,AQ,) > 0 and 6 < 1, equation (A6) cannot hold for large n. There-
fore, @. = 0 with positive probability for some 7 = ¢.

Part (b): Choose an a, € (), such that J(a,,q) = 0 for some q = q,. Define
the random variable ¢ * as the first ¢ > 1 such that a, = a, and @,_; = q,. By
construction @, = 0.

Prob(Qr = gla;,Q;-1)
=Prob(Q@r =q|T=t"a,,Q, 1)Prob(T =¢"|a,,Q; 1)
+ Prob(Qr = q|T < t%a,,Q,_1)Prob(T < t*|a,, Q; 1) (A7)
= Prob(Q; =q|T =t"a,)Prob(T=t"|a,, Q;_1)
+ Prob(Qr =q|T < t%a,,Q,_1)Prob(T < t*|a,, Q;_1).

Note that conditional on 7' > ¢*, @, does not affect the probability distribu-
tion of @,. By part (a), we can select an a,, which defines ¢, such that
lim;,_, Prob(T = t*|a,,Q,_,) = 1 for any a, and @,_,. The result for the spot
price probabilities follows by a similar construction using the definition of
P(a,q).

Part (c): If the Markov demand process has a limiting invariant distribution
then the probability distribution in equation (A7) does not depend on a, for large
T. A sufficient condition for the invariant distribution is II > 0. Q.E.D.

Proof of Proposition 2 (Increased Inventory): Part (a) follows directly from
Proposition 1(a). Part (b) follows from P(a,q) decreasing in ¢ (Proposi-
tion 1(c)). Since this holds path-by-path, the definition of forward prices in
equation (6) implies that F, ,.,(a,q) also decreases in q. Part (c) is a direct
consequence of (a). Part (d) follows from the nonzero stockout probability in
Corollary 1.2 (renewal property). Once @F = 0 (which implies @, = 0), then

;7 =@, forallt =7. QE.D.

Proof of Corollary 2.1 (Derivative Prices): The proof follows immediately
from Proposition 2(b), which shows that forward prices are lower along ev-
ery path of demand shocks. Q.E.D.
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Proof of Proposition 3 (Forward Prices): The limiting forward price, F,,
follows immediately from Proposition 1(c) (spot prices are bounded) and,
given II > 0, Corollary 1.2(c) (existence of invariant distribution). Existence
of monotone sequences of time and state independent bounds F}.;, and F. .
is a consequence of bounded spot prices and the limiting forward price,

F,. QED.

Proof of Proposition 4 (Increased Demand): The proof of part (a) uses the
limit of an induction argument in a finite horizon economy as the horizon
T — co. The notation is the same as for Lemmas A1-A4. Recall that J(T,a,,q) =
J(T,a,,q) = 0; therefore at T prices are ordered, P(T,a,,q9) < --- < P(T,a,,,q).
Assume P(¢t + 1,a4,q9) < --- < P(t + 1,a,,,q) at date ¢ + 1. Consider two
states a,,a;, € Q such that f(a,,AQ) < f(a,,AQ) as in property (D), Sec-
tion IL.B. If J(¢t,a,,q9) = J(t,a,,q), then P(t,a,,q) < P(t,a,,q) follows di-
rectly. If, instead, J(¢t,a,,q) > J(t,a;,q) = 0, then

P(t,Cle,CI) = HE[P(t + 17a7J(t’a€7q))|a€]
< aE [P(t + laan(taaé’:q))‘ah] (A8)
< GE[P(t + 1$an(taah7q))|ah] = P(t:ahaQ)-

The first line is from J(¢,a,,q) > 0 which implies that equation (3a) holds.
The first inequality holds by property (E) (first-order stochastic domi-
nance). The second inequality holds from the maintained assumption that
J(t,a,,q) > J(t,a,,q) = 0 and Proposition 1(c). The final line is equa-
tion (3) again. This ordering is preserved in the infinite horizon economy.

The proof of (b) for forward prices can be done directly for the infinite
horizon economy using (a). If J(a,,q) = J(a;,q) then

F, .(a¢,q) = E[P(a,,Q,)|a;,Q, = J(aq)]
=E[P(a,,Q,)|a,Q; =J(a,q)] (A9)
< E[P(aT’QT)|ah’Qt = J(ah,Q)] = Ft,‘r(ah?q)-

The first inequality follows from the result that prices are decreasing in
initial storage (Proposition 1(c)). The second inequality is a consequence of
the first-order stochastic dominance assumption (E). If, on the other hand,
J(ay,q) > J(a,,q) = 0, the proof is more complicated as the effect on prices
of the first-order stochastic dominance is offset by the higher future inven-
tory. This case, therefore, is handled in the following lemma which com-
pletes the proof. Q.E.D.
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LemmA A5: In an economy satisfying (D) and (E) for any two states a,,a; € ()
such that f(a,,AQ) < f(a,,AQ) and J(ay,q) > J(a,,q) = 0, their forward
prices are ordered as F, (a,,q) < F, (a;,q) for all 7 > t.

Proof of Lemma A5: We first establish the result for the one-period hori-
zon forward contract. If J(a,,q) > J(a,,q) = 0 then by the equilibrium equa-
tion (3),

P(ay,q) = 0E[P(a,J(ay,q))|a,] = 0F, , 1(a;,q)
(A10)
P(a,,q) = 0E[P(a,J(a¢,q))|a,] = 0F, , 1(a,q).

Since P(ay,,q) > P(a,,q) by part (a), F, ;. 1(a5,q) > F, 1, 1(a,,q). Next, we use
induction to show that F, ,,,(a;,,q) > F,,.,(a,q) extends from n = 1 to
longer horizons n > 1. Suppose that F, ,, 1(a,,q) > F, ,,, 1(a;,q).

e Define P, , = P(a,.,_1,Q/,_5) as the spot price at time t + n — 1
given the previous inventory, @/, o, on a (random) path of demand
shocks, {a,,1,...,a,,,_,} given a, = a,, at time ¢. Analogously, let P/, be
the spot price one period later at ¢ + n.

¢ Let E} denote the conditional expectation at ¢ given the transition prob-
abilities on the future shocks a, given a, = a,,. Let E,,,_, denote the
conditional expectation at time ¢ + n — 1 given a particular a,,,_;.
Since the demand states are Markovian, given a,.,,_;, the earlier shock
a, does not affect the expectations at time ¢ + n — 1.

¢ Define the random variable G/, _, for each path, {a,,,...,a,.,_;} af-
ter a, = a; as:

Et+n*1[Pth+n] - Ptlﬁrnfl

h —
Gt+nf1 - Ph
t+n—1

(A11)

e For a, = a,, define similar terms analogously.

Since the forward price is the expected future spot price, the forward prices
in the a, and a, states can be expressed in terms of the G/ ,,_; and G/,,_; as
follows:

Ft,t+n(ah’q) = Ft,t+n—1(ahaq) + Eth[PtI}Fn—thh+n—1
(A12)
F,iin(ae,q@) = Fyyi1(ag,q) + E/[P}.,1Gfip 1]

Recall that E/'[P/, 11=F, ., 1(a4,q9) > F, ,.,,_1(a,,q) = E{[P/., 1] (by the
induction assumption). Therefore, a sufficient condition for F; ;. ,(a;,q) >
F, , .(a,q)is Gl.,_ 1= G{,,_, for each possible post-¢ path, {a,. 1,...,a;.,_1}-
Given a particular post-t path, the two values G, ,_, and G{.,_, may differ
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only because of different inventories at timet +n — 1, Q" ,_; and @}, ,,_;. In
particular, since @} = J(a,,,q) > J(a,,q) = Q/ (i.e., the maintained assump-
tion in this lemma), Proposition 2 says @, ; = Q% ,._;.

There are two cases to consider to show G, ,_; = Gf,,_;. In the first case,
if @, 1> 0and @, ; =0, then

Et+n—1[Pt’3rn] - Ptiz—n—l

Gtthnfl = Pt}fk 1
n (A13)
_ 1 1= Et+n71[Pt€+n] - PteJrnfl _ G(
(% N Pt€+n—1 e

This follows from the equilibrium condition (3) where @7, ; > 0 and
Qt.,_1=0.In the second case, if @}, ;= Q/,,,_; = 0 then

E, ., 1[P(a;in,0)] — Pth+n71
Pt}fknfl
- E, ., 1[P(a;,,0)] — Pt€+n—1

- l
Pt+n—1

h —
Gt+nf1 -

(A14)

— Nt
- Gt+nf1'

The inequality follows from two observations. First, conditional on a stockout
att+n—1(Q", 1=@Q} ,_1=0),the expected spot price for date ¢ + n depends
only the realization for a,,, whose conditional distribution depends only on
a;.,—1 (and not on the demand state a, at ¢). Second, the date ¢ + n — 1 prices
are ordered P, ,_, =P/, _, by Proposition 1(c) since Q% , 5= Qf.,_». Q.E.D.

Proof of Proposition 5 (Spanning): Consider a generic state (¢,a,,Q,_;). The
period ¢ + 1 payoff on a one-period forward contract is P(a,,,,Q;) —
F, ;i1(a;,Q,), where @, = J(a,,Q,_;) and a,,, takes one of only two pos-
sible values, say a,,a, € Q att + 1, for each realization a, € Q at ¢. As-
sumptions (D) and (E) then imply that at ¢ + 1, P(a,,®Q,) > P(a,,Q,) by
Proposition 4(a). Since the payoffs on a one-period riskless bond are constant,
the payoffs on a one-period bond and a one-period forward contract are lin-
early independent. Therefore one-period uncertainty is spanned for every
(t,a,,Q,_ 1) and the market is dynamically complete (see Harrison and Kreps
(1979)). Q.E.D.

Proof of Proposition 6 (Forward Slopes): F/, = (r + 6)/(1 — 8) follows from
equilibrium condition (3) and the law of iterated expectations.

Ft,TJrl(at’Qtfl) - Ft,r(atath) =E[P(a,1,Q,) — Pa,,Q.-1)a;,Q; 1]
= E[E[P(a,1,Q.)|a,,Q; 1]
—P(a,,Q,-1)la;,Q;1] (A15)
=E[(6"' - DP(a,,Q, 1)la,,Q, 1]
r+o

= 15 Fer(an, @)
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The inequality is strict if Prob(@, = 0) > 0. Part (a) follows from II > 0 which
implies that w(a |a) > 0 fora, € Q , hence Prob(Q,.; =0|Q, = 0) > 0. For part
(b) define ay such that P(ay,0) = P,,,... Note that J(az,0) = 0. Since 11 > 0,
F. . 1(ag,0)=E_[P(a,.1,0)] <P(ag,0). Therefore the demand state and pre-
vious inventory pair (a,0) is sufficient for a negative slope (backwardation).
Since the probability of a stockout is nonzero and 7 (ag|a) > 0 for all a, the
probability of (a,0) at any 7 > 7" is nonzero. Finally, (c) follows directly from

the limiting forward price in Proposition 3. Q.E.D.

Proof of Proposition 7 (Convenience Yield): Parts (a) and (b) follow by re-
arranging equation (A15) where 7 = ¢t + n:

Ft,t+n+1 - 1+ 7').

F t,t+n (1 - 5)

(Al6)

As in Proposition 6, the inequality is strict only if Prob(®,,, = 0) > 0. Part
(c)(@) follows from IT > 0 which implies that Prob(®,,,.; = 0/@Q;.,, = 0) > 0.
Finally part (c)(ii) follows from equation (10) and the Proposition 6 impli-
cation that lim, , (F, ,,,.1/F;,.,) = 1. Q.E.D.

Proof of Proposition 8 (Volatility): The conditional forward-price volatility
must decline in maturity for forwards of sufficiently long maturity due to
the collapsing bounds, {F}};,} and {F} ..}, and the limiting forward price, F.,
(from Proposition 3). To construct the violation of the Samuelson effect in
(b), consider a and g such that J(a,q) > 0. By the equilibrium condition (3a)
and the definition of forward prices in equation (6), there exists an N = 1
such that for all n = N, F, ,,,(a,q) = 6 "P(a,q). Since § < 1, this implies
that the variance of F, ,. ,(a,q) is larger than the variance of the spot price
and, hence, increasing in n. Q.E.D.

Proof of Corollary 8.1 (Hedge Ratios): The proof follows immediately from
Propositions 4 and 8. Q.E.D.

Proof of Proposition 9 (Augmentation): Under the conditions b, > 0 and
E,[b,.1f(a,,1,AQ)] = b,E,[ f(a,.1,AQ)], the equilibrium condition (3) in the
two economies is identical. Therefore, J* = J. Q.E.D.
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