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Representation Theorem for Generalized Disappointment Aversion

We construct a functional form for risk preferences as a certainty equivalent

µ(p) for lottery p that solves

u (µ(p)) =
∑

xi∈X

p(xi)u(xi)− θ
∑

xi≤δµ(p)

p(xi)
(

u (δµ(p))− u(xi)
)

(A1)

where xi is an outcome with probability p(xi) and θ and δ are preference

parameters. The final theorem delivers a linearly homogeneous version of

these preferences where

u(x) =

{

xα

α
for α ≤ 1, α 6= 0

log(x) for α = 0
(A2)

Let X = [x0, x
0] be the set of monetary outcomes and L be the set of

finite-support lotteries on X. Lotteries that assign probability one to a single

x ∈ X are denoted simply as x. Let ¹ be a binary relation on L using the

standard notation of p Â q means p is strictly preferred to q, p º q denotes

weakly preferred, and p ∼ q denotes indifference. The standard properties of

preferences are contained in the following axiom.

Axiom 1 – Chew-Dekel Class:

(a) Monotonicity: For x, y ∈ X, x Â y if and only if x > y,

(b) Preference Relation: ¹ is complete and transitive,

(c) Continuity: For all p ∈ L, the sets {q|q º p} and {q|p º q} are closed,
and
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(d) Betweenness: For all p, q ∈ L and λ ∈ (0, 1), p Â q implies p Â λp+ (1−
λ)q Â q (respectively, p ∼ q implies p ∼ λp+ (1− λ)q).

This axiom implies that the certainty equivalent of a lottery, denoted µ(p),

with the property that µ(p) ∼ p exists and is a well defined function (i.e.,

µ : L → X). Characterizing the certainty equivalent function is sufficient

to characterizing preferences since monotonicity implies p º q if and only if

µ(p) ≥ µ(q). The betweenness axiom implies that µ(p) ∼ λp + (1 − λ)µ(p).

It is this property that implies preferences are linear in probabilities and,

therefore, closely related to expected utility (i.e., belong to the Chew-Dekel

class of preferences of Chew (1983), (1989) and Dekel (1986). See Backus,

Routledge, and Zin (2005)).

Lemma: Preferences satisfy axiom 1 if and only if there exists

(i) u : X → [0, 1] continuous, increasing

(ii) ∆k : X → X continuous, increasing, with

∆k(m) < ∆k+1(m) for all m ∈ X, k = 1, ..., K,

(iii) Lk(x,m) : [0, 1]
2 → R continuous, decreasing in x, increasing in m

(iv) θk ∈ (−1,∞)

and

M(p,m) = u−1





∑

xi∈X

p(xi)u(xi)−
K
∑

k=1

θk
∑

xi≤∆k(m)

p(xi)Lk (xi,∆k(m))





(A3)

such that µ(p) =M(p, µ(p)) and p º q if and only if µ(p) ≥ µ(q).

Proof: Dekel (1986) and Chew (1989) show that preferences satisfy axiom

1 if and only if there exists a function U such that µ(p) uniquely solves

∑

xi∈X

p(xi)U (xi, µ(p)) = 0 (A4)

with U(x,m) continuous, increasing in x, decreasing inm and satisfies U(x,m) =

0 if x = m. (For exposition, consider we focus on X = [0, 1] with the nor-
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malization that µ(x0) = 0 and µ(x
0) = 1). Converting (A4) to (A3) is simply

notation and algebra. Rewrite (A4) as

∑

xi∈X

p(xi)u(xi)−
∑

xi∈X

p(xi) (U(xi,m) + u(xi)− u(m)) = u(m)

Let F (x,m) = U(x,m) + u(x) − u(m). Note F (x,m) is continuous and in-

creasing in x, decreasing in m, and F (x,m) = 0 if x = m. Since the function

is continuous, we can now partition this function (note ∆k(·) are invertible).

Let

L1(x, z) = F
(

x,∆−1k (z)
)

I(x ≤ z)

Lk(x, z) = F
(

x,∆−1k (z)
)

I(x ≤ z)−
k−1
∑

h=1

Lk(x, z) k = 2, ..., K

Let z = ∆k(m) and note L(x,∆k(m)) = 0 at x = ∆k(m). Finally, rescale the

function by θk.

Expected utility preferences require the independence axiom. Indepen-

dence states that p1 Â p2 implies λp1 + (1 − λ)z Â λp2 + (1 − λ)z (where

z ∈ X and λ ∈ (0, 1)). Axiom 2, below, relaxs the independence axiom by

requiring that preferences satisfy independence if the choices of p1 versus p2

and λp1 + (1 − λ)z versus λp2 + (1 − λ)z are “disappointment comparable.”

We generalize Gul by defining disappointing outcomes as being sufficiently far

below the certainty equivalent. The key to our generalization is a change to

the definition of disappointment.

Define the set (p1, p2, z, λ) as disappointment comparable if:

(i)
∑

xn<δµ(p1)

p1(xn) =
∑

xn<δµ(p2)

p2(xn) , and

(ii) for i = 1, 2 and for all xn ∈ supp(pi)

xn ≥ δµ(pi)→ xn ≥ δµ(λpi + (1− λ)z)

xn ≤ δµ(pi)→ xn ≤ δµ(λpi + (1− λ)z)

(A5)

Disappointment comparability first requires the the lotteries p1 and p2 have
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the same disappointment likelihood relative to the disappointment threshold

of δµ(p). Second, comparability requires that mixing in the outcome z does

not cause any outcome to switch from being disappointing in pi to not disap-

pointing in λpi + (1− λ)z, or vice versa. When these two conditions are met,

preferences satisfy the independence axiom.

Axiom 2 – δ-Weak Independence: There exists a δ ≤ 1 such that for all

p1, p2 ∈ L, λ ∈ (0, 1), and z ∈ X, p1 Â p2 implies λp1+(1−λ)z Â λp2+(1−λ)z

if (p1, p2, z, λ) is disappointment comparable.

The parameter δ specifies how far below an outcome must be below the

certainty equivalent before it is considered disappointing.

Axioms 1 and 2 are sufficient to generate an interesting class of preferences.

Theorem 1: ¹ satisfies Axioms 1 and 2 if and only if they are represented

by µ(p) such that p º q if and only if µ(p) ≥ µ(q), where:

u (µ(p)) =
∑

xi∈X

p(xi)u(xi)− θ
∑

xi≤δµ(p)

p(xi)
(

` (u (δµ(p)))− ` (u(xi))
)

. (A6)

Proof of Theorem 1: The above lemma shows that axiom 1 implies

the functional form of equation (A3). In addition, ∆k(m) and Lk(x, δk(m))

are increasing in x and decreasing in m, ensuring µ(p) =M(p, µ(p)) exists and

is unique. Finally, Lk(x,∆k(m)) = 0 if x = ∆k(m). To prove the theorem, we

need to establish that axiom 2 implies that K = 1, ∆1(m) = δm, L1(x, δm) =

`(δm)−`(x) with `(·) as an increasing funtion. For exposition, consider u(x) =

x and X = [0, 1], since extending to general u(x) and X is straightforward.
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The δ-Weak Independence axiom can be stated as

if



























(i) µ(p1) ≥ µ(p2)

(ii)
∑

xi≤δµ(p1)

p1(xi) =
∑

xi≤δµ(p2)

p2(xi)

(iii) z ∈ {x|x ∈ supp(pi) and x ≤ δµ(pi)} → z ≤ δµ (λpi + (1− λ)x)

(iv) z ∈ {x|x ∈ supp(pi) and x ≥ δµ(pi)} → z ≥ δµ (λpi + (1− λ)x)



























then µ (λp1 + (1− λ)x) ≥ µ (λp2 + (1− λ)x) .

(A7)

Assume p1, p2, and λ satisfy the necessary conditions of equation (A7). For

notation, let µj = µ(pj) and µ̂j = µ (λpj + (1− λ)x). Consider equation (A3)

with one cut-off (K = 1).

µ̂j = λ
∑

xi∈X

pj(xi)xi − λθ
∑

xi≤∆(µ̂j)

pj(xi)L(xi,∆(µ̂i))

+(1− λ)x− (1− λ)θL(xi,∆(µ̂i))I (x ≤ ∆(µ̂j))

where I(·) is an indicator function. For θ > 0 and for arbitrary ∆(m) and

L(x,∆(m)), it is easy to construct lotteries such that µ̂1 < µ̂2. Satisfying

Weak Independence requires that ∆(m) = δm (hence K = 1 and there can be

no other cut-offs). This implies

µ̂j = λµj + λθ

(

∑

xi≤δµi

pj(xi)L(xi, δµi)−
∑

xi≤δµ̂j

pj(xi)L(xi, δµ̂j)

)

+(1− λ) (x− θL(x, δµ̂j)I(x ≤ δµ̂j))

.

By parts (iii) and (iv) of (A7),

µ̂j = λµj + λθ

(

∑

xi≤δµj

pj(xi) (L(xi, δµj)− L(xi, δµ̂j))

)

+(1− λ) (x− θL(x, δµ̂j)I(x ≤ δµ̂j)

(A8)

Again, for arbitrary L(x, δm) we can construct lotteries such that µ̂2 > µ̂1

(violating weak independence). It must therefore be the case that the loss
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function is separable in x and δm. The restriction that L(x, δm) = 0 if x =

δm means that an additively separable loss function must be of the form

L(m,x) = `(δm) − `(x), where `(·) is an increasing function. Inserting this

into (A8) and using, by part (ii) of (A7) that
∑

xi≤µ1

p1(xi) =
∑

xi≤µ2

p2(xi) = Φ

produces

µ̂j = λµj + λθΦ [`(δµj)− `(δµ̂j)] + (1− λ) (x− θ[`(δµ̂j)− `(x)]I(x ≤ µ̂j))

In this form, if µ1 > µ2 then µ̂1 > µ̂2 satisfying weak independence.

These preferences are similar to those in equation (A1). Except, here disap-

pointing outcomes are scaled by the increasing function `(·). These preferences

allow for different degrees of risk aversion over disappointing outcomes (similar

to Chew (1989) weighted utility). It also has the potential to generate pref-

erences that are analogous to the “S-shaped” valuation function in Prospect

Theory (Kahneman and Tversky (1979)). Unfortunately, unless ` is linear

(proportional), the preferences are not linearly homogeneous and, therefore,

ill-suited for asset pricing.

The following axiom delivers linearly homogeneity of µ(p) by requiring that

outcomes above and below the disappointment threshold be treated propor-

tionally. The axiom is stated by considering two lotteries, p1 and p2 that have

“small tails.” In particular, these lotteries have the property that when mixed

with a good outcome, x0 (bad outcome, x0) the outcomes of p1 and p2 are all

disappointing (all not disappointing). This implies that `(·) in equation (A6)

is linear.

Axiom 3 – δ-Symmetry: Given a δ from Axiom 2, for all p1, p2 ∈ L and

λ ∈ [0, 1] such that for all xn ∈ supp(pi), δµ(λpi+(1−λ)x0) ≤ xn ≤ δµ(λx0+

(1− λ)pi)

λp1 + (1− λ)x0 º λp2 + (1− λ)x0 iff

λx0 + (1− λ)p1 º λx0 + (1− λ)p2
(A9)
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These axioms are sufficient to state and prove our main theorem.

Theorem 2: ¹ satisfies Axioms 1-3 if and only if they are represented by

µ(p) in equation (A1) such that p º q if and only if µ(p) ≥ µ(q).

Proof of Theorem 2: Using axiom 3, for lotteries p1 and p2, let

µjb = µ (λx0 + (1− λ)pj) and µjw = µ (λpj + (1− λ)x0). We calculate these

certainty equivalents next, using the fact that δµjw < z < δµjb for all z ∈

supp(pj).

µjw = λ

[

∑

xi∈X

pj(xi)xi − θ
∑

xi≤δµjw

pj(xi)(`(δµjw)− `(xi))

]

+ (1− λ) [x0 − θ(`(δµjw)− `(x0))]

= λ
∑

xi∈X

pj(xi)xi + (1− λ) [x0 − θ(`(δµjw)− `(x0))]

, (A10)

and

µjb = λx0 + (1− λ)

[

∑

xi∈X

pj(xi)xi − θ
∑

xi≤δµjb

pj(xi)(`(δµjb)− `(xi))

]

= λx0 + (1− λ)

[

∑

xi∈X

pj(xi)xi + θ
∑

xi∈X

pj (`(xi))− `(δµjb)

] .

(A11)

µjw depends on pj only through the first moment (the first term of equation

(A10)). However, µjb depends on the first moment of p as well as moments

generated by `(·) (note
∑

pj(xi)`(xi) in equation (A11)). Symmetry requires

that µ1b ≥ µ2b if and only if µ1w ≥ µ2w. The only way this condition can be

satisfied for all lotteries is for the penalty function, `(·) to be affine. Given

we can re-scale with the parameter θ, setting `(x) = x (or more generally,

`(·) = u(·)) is without loss of generality.

Note that we stated disappointment and the δ−weak independence axiom

using the certainty equivalent function, µ(p). Since µ(p) exists by axiom 1,

stating axioms this way is simpler and, hopefully, more intuitive. For readers

who are familiar with Gul (1991), it is straightforward to express the axioms
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purely in terms of the preference operator, º, and lotteries. For example, to

define the amount of disappointment, one can proceed as Gul and define

Bδ(p) = {q|x ∈ supp(q)→ (δ−1x) º p} ,

Wδ(p) = {q|x ∈ supp(q)→ (δ−1x) ¹ p} .

where (δ−1x) is the lottery that pays (δ−1x) for certain. Then define a decom-

position of a lottery as λ ∈ [0, 1] and q, r ∈ L such that p = (1−λ)q+λr with

q ∈ Bδ(p) and r ∈ Wδ(p). Since lottery q has zero probability on all elements

below the threshold δµ(p) and lottery r has zero probability for outcomes

above the threshold, λ is the probability of disappointment in the lottery p.
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