Exploring Large Scale Insider Trading Data: Network Patterns & Discoveries

Acar Tamersoy, Bo Xie, Stephen Lenkey, Bryan Routledge, Polo Chau, Sham Navathe Georgia Tech GT SEC CMU GT GT

Georgia Tech tamersoy@gatech.edu

Summary

How do corporate insiders really trade? Does the CEO of a company trade differently than the CFO? We performed the first academic, large-scale analysis of the full insider trading data from SEC, from 1986 to 2012, totaling more than 12M transactions, among 370K insiders. We found that insiders form tightly-connected clusters in which trade related information might propagate.

Insiders and (Illegal) Insider Trading

Financial regulators are interested in applying data mining techniques to detect illegal trades among insiders (e.g., CEO, directors), by analyzing their Form 4 filings.

We performed the **first, large-scale** academic study of the complete Form 4 filings from SEC.

Insiders engage in **illegal insider trading** when they exploit their roles and use **nonpublic inside information** to profitably trade for their companies' stock.

Form 4 Dataset

SEC requires insiders to disclose their trades within 2 days via Form 4, publicly available from SEC's EDGAR system (www.sec.gov/edgar.shtml).

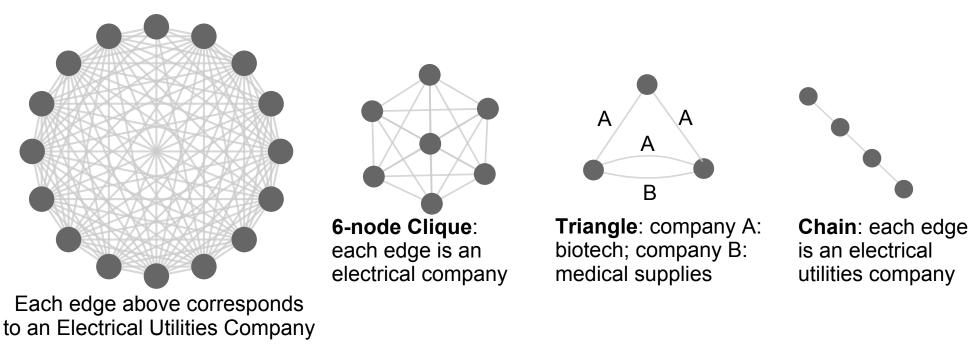
We analyzed all forms from January 1986 to August 2012.

Insiders 370,627 Companies: 15,598 Transactions: 12,360,325 Sale transactions: 3,206,175 Purchase transactions: 1,206,038

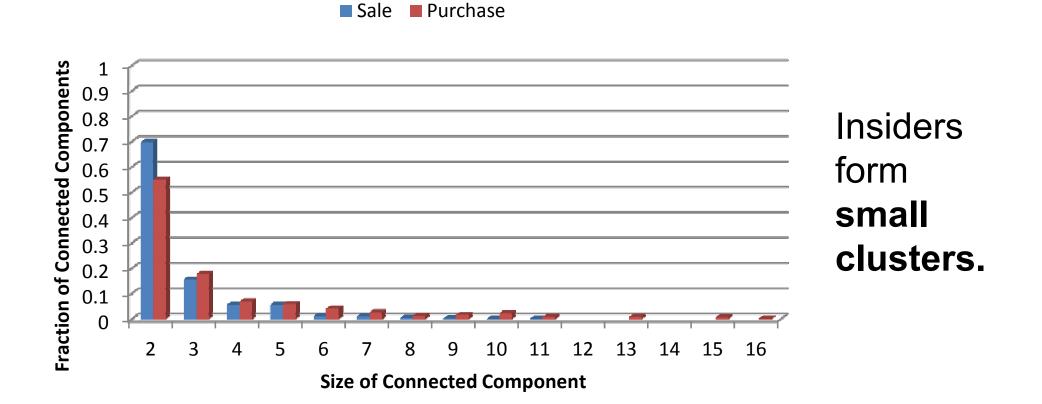
Each form contains insider's name + company + role in the company (from CEO to Retired), transaction date and type (we focused on Purchases and Sales), etc.

Patterns, Observations, & Analysis

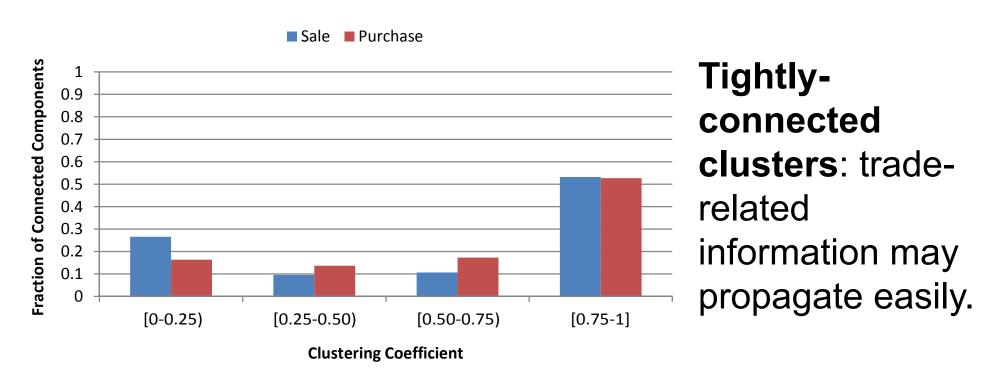
We conjecture that some insiders share nonpublic inside information with each other. We build **insider networks** where nodes are insiders and edges connect insiders trading similarly.


Our **similarity function** takes as input the transaction times of two insiders of the same company and returns a similarity scale based on the transaction timings.

$$S(X_C, Y_C) = \frac{\left(\sum_{i=1}^{|X_C|} \sum_{j=1}^{|Y_C|} I(x_i, y_j)\right)^2}{|X_C| \times |Y_C|} \frac{I(x, y) = 1 \text{ if } x = y}{I(x, y) = 0 \text{ o/w}}$$

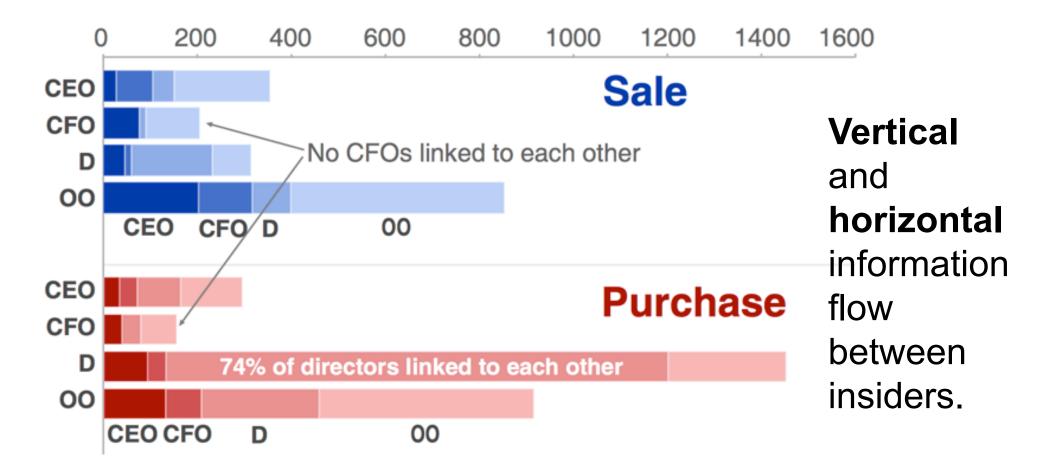

We compute a similarity value for each pair of insiders (X_C, Y_C) of company C. If both insiders traded at least h_z times and their similarity value is at least h_m , we include nodes and an edge for these insiders to our network.

Network	Nodes	Edges	Connected Components			
Sale	1630	1473	623	 h, = 5		
Purchase	1678	2656	489	$h_m^2 = 0.5$		


Connected Components

Sizes of Components

Density of Components



Number of Companies in Components

	Number of Companies								
	1	2	3	4	5	6	7		
Sale	96.8%	2.7%	-	0.3%	-	-	0.2%		
Purchase	97.5%	2.5%	_	_	_	_	_		

Trade-related information flow about multiple companies is **not** likely to occur between insiders.

Roles of Insiders in Components

Discussion of Case Studies

Insiders from the **same family** trade similarly, ~7% of the directly connected insiders share the same last names.

All insiders in the chain below belong to the same investment firm, who may be acting on behalf of the firm.